Researchers make flexible, transparent e-paper from silicon

Sep 20, 2013 by Lisa Zyga feature
The silicon nanowire paper was synthesized in a vertical high-frequency induction furnace. The direction of gas flow is marked by the yellow dashed lines. The red circles denote the locations where the silicon nanowires grow. (d) shows the synthesis of a SiNWsP@graphene electrode. Credit: Pang, et al. ©2013 American Chemical Society

(Phys.org) —In the growing area of flexible, transparent electronic devices, silicon has not played much of a role. Instead, materials such as indium tin oxide, carbon nanotubes, and others are often used to make bendable electronics.

Now in a new study, researchers have synthesized silicon nanowires and woven them into a paper that outperforms many other paper-like materials in terms of transparency and flexibility. Since today's integrated circuit technology is designed for silicon (in bulk form), silicon nanowires would be much more compatible with these existing technologies than other materials, an advantage that could potentially rejuvenate research into silicon-based flexible electronics.

The researchers, Chunlei Pang, Hao Cui, Guowei Yang, and Chengxin Wang, at Sun Yat-sen (Zhongshan) University in Guangzhou, China, have published their study on the flexible, transparent, and self-standing silicon nanowires paper (FTS-SiNWsP) in a recent issue of Nano Letters.

"We achieved the synthesis of flexible transparent and free-standing silicon nanowires paper, which may be a new part of the modern ," Wang told Phys.org. "The silicon paper shows more superiority than other inorganic due to the advantage of being compatible with today's integrated circuit technology for bulk silicon, and may be expected to meet emerging technological demands such as components of transparent electrical batteries, roll-up displays, wearable devices, and so on."

This video is not supported by your browser at this time.
The self-supporting cylindrical silicon nanowire paper demonstrates good flexibility and transparency. Credit: Pang, et al. ©2013 American Chemical Society

As the researchers explain, bulk silicon is brittle at and only becomes ductile close to its of about 1400 °C. In contrast, nanoscale silicon possesses a very large straining ability that enables flexibility at room temperature. However, weaving silicon nanowires into a paper-like material has been challenging because it requires achieving a unique interlocking alignment using controlled, -free growth methods.

Here, the researchers developed a simple method to synthesize silicon nanowires and assemble them into the desired interlocking alignment using a vertical high-frequency induction furnace. SiO powder and Ar gas (serving as a carrier gas) get blown into the furnace where they are quickly heated to about 1600 °C and kept there for 1 hour. The heat causes the SiO powder to decompose into SiO2 vapor and Si particles, both of which are transported by the Ar gas to a low-temperature zone where they stratify under gravity action due to their different molecular weights.

As more SiO2 and Si are transported to their locations, they nucleate and grow. While the SiO2 deposits form a powder sample, the Si particles form nanowires with diameters of about 10 nm that grow in the direction of the gas flow. As the Si nanowires grow, they spontaneously interlock with each other to form a free-standing membrane material. Scanning electron microscope images show a highly porous, woven structure, whose pores can potentially be filled with other functional materials for novel applications. Tests also showed that the FTS-SiNWsP material had very good optical transmittance and could bend repeatedly without cracking.

(a) SEM and (b) TEM images of the silicon nanowire paper. The inset in (a) shows the cylindrical structure of the paper, which has a diameter of about 2 cm. The inset in (b) shows the nanowire pattern. Credit: Pang, et al. ©2013 American Chemical Society

To demonstrate how these woven silicon nanowires can be used to create high-performance battery electrodes, the researchers grew graphene on the outside of the silicon in a core-shell design. The graphene also filled the gaps of the woven silicon nanowire material, completely encasing the material. After fabricating coin-cell Li-ion batteries using a FTS-SiNWsP@graphene film as the anode and Li as the cathode, the researchers showed that these batteries have very good performance, performing close to their theoretical capacity and maintaining a capacity of more than 1000 mAh/g after 100 cycles.

The FTS-SiNWsP material has the potential for many applications in addition to battery electrodes, such as flexible solar cells, wearable computers, paper displays, and supercapacitors. In the future, the researchers plan to build on this synthesis method to develop silicon nanowire paper materials to meet these emerging technological demands.

"Next, we plan to carry out the application research of the paper material in solar cells," Wang said.

Explore further: Research brings unbreakable phones one step closer

More information: Chunlei Pang, et al. "Flexible Transparent and Free-Standing Silicon Nanowires Paper." Nano Letters. DOI: 10.1021/nl402234r

Related Stories

Nanowires grown on graphene have surprising structure

Apr 23, 2013

(Phys.org) —When a team of University of Illinois engineers set out to grow nanowires of a compound semiconductor on top of a sheet of graphene, they did not expect to discover a new paradigm of epitaxy.

Growing thin films of germanium

Sep 06, 2013

Researchers have developed a new technique to produce thin films of germanium crystals—key components for next-generation electronic devices such as advanced large-scale integrated circuits and flexible ...

Research brings unbreakable phones one step closer

Sep 16, 2013

Breakthrough research at RMIT University is advancing transparent bendable electronics, bringing science fiction gadgets – such as unbreakable rubber-like phones, rollable tablets and even functional clothing – closer ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Urgelt
not rated yet Sep 20, 2013
Might be tough to scale up a process like that to support economical production. It's slow, and it uses ferocious amounts of energy.

I hasten to add, basic research like this is always valuable; it's one more set of data points to guide future development decisions for the industry.