Growing thin films of germanium

September 6, 2013, American Institute of Physics
Growing thin films of germanium
High-speed germanium thin-film transistors enable next-generation electronics. Credit: Kyushu Univ./T. Sadoh

Researchers have developed a new technique to produce thin films of germanium crystals—key components for next-generation electronic devices such as advanced large-scale integrated circuits and flexible electronics, which are required for gadgets that move or bend.

Unlike conventional methods, the new approach does not require or other crystals to act as seeds to grow the germanium crystal. And, the researchers say, the new method can be used to produce germanium films with a very large area, allowing for more potential applications.

"This is the realization of the dreams of crystal-growth researchers," says Taizoh Sadoh of Kyushu University. "This unique method will open new ways to create advanced flexible electronics."

Sadoh is an author of the paper describing the new work, which appears in the AIP Publishing journal Applied Physics Letters.

Charged particles move through germanium more readily than they do through silicon, making germanium a good material for electronics. In particular, it is a promising material for the thin-film transistors that are needed for flexible electronics. However, for use in flexible electronics, the germanium would have to be grown on malleable materials, which tend to soften at temperatures above 300° Celsius. The challenge, said Sadoh, is to grow germanium at lower temperatures.

Using gold as a catalyst, Sadoh and his colleagues were able to grow at a temperature of about 250° Celsius. They were also able to grow them in such a way that their crystal structure has the proper orientation and electrical properties necessary for technological applications.

Explore further: Thin layer of germanium may replace silicon in semiconductors

More information: The paper, "Nucleation controlled gold-induced-crystallization for selective formation of Ge(100) and (111) on insulator at low-temperature (~250° C)" by Jong-Hyeok Park, Tsuneharu Suzuki, Masahi Kurosawa, Masanobu Miyao and Taizoh Sadoh appears in the journal Applied Physics Letters: dx.doi.org/10.1063/1.4819015

Related Stories

Germanium made compatible for lasers

April 22, 2013

(Phys.org) —Good news for the computer industry: a team of researchers has managed to make germanium suitable for lasers. This could enable microprocessor components to communicate using light in future, which will make ...

Recommended for you

New insights into magnetic quantum effects in solids

January 23, 2019

Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3-D pyrochlore Heisenberg model. The surprising ...

Rapid and continuous 3-D printing with light

January 22, 2019

Three-dimensional (3-D) printing, also known as additive manufacturing (AM), can transform a material layer by layer to build an object of interest. 3-D printing is not a new concept, since stereolithography printers have ...

Scientists discover new quantum spin liquid

January 22, 2019

An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

Toward ultrafast spintronics

January 21, 2019

Electronics have advanced through continuous improvements in microprocessor technology since the 1960s. However, this process of refinement is projected to stall in the near future due to constraints imposed by the laws of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.