Study shows projected climate change in West Africa not likely to worsen malaria situation

Sep 16, 2013 by Denise Brehm
This large pool of water near Banizoumbou, Niger, formed during the monsoon season and became a breeding site for mosquitoes. Credit: Teresa Yamana

As public-health officials continue to fight malaria in sub-Saharan Africa, researchers are trying to predict how climate change will impact the disease, which infected an estimated 219 million people in 2010 and is the fifth leading cause of death worldwide among children under age 5.

But projections of future have been hampered by wide variation in predictions for the region and lack of a malaria-transmission model that adequately describes the effects of local rainfall on mosquitoes, which breed and mature in ephemeral pools that form during and after in West Africa.

A new MIT study led by Elfatih Eltahir, a professor in the Department of Civil and Environmental Engineering, combines a new model of malaria transmission with global forecasts for temperature and rainfall to improve predictions of malaria with climate change. Eltahir and graduate student Teresa Yamana found that although the capacity for malaria transmission will change in some areas of West Africa, overall infection rates are not likely to increase: Climate change by itself is not likely to make the situation worse. A paper on the study appeared online Sept. 16 in the journal Environmental Health Perspectives.

"Malaria is one of the world's leading public-health problems, taking a toll not only in lives, but also in economic terms, especially in Africa," Eltahir says. "While other researchers are looking at the global on broadly defined variables such as or , the biggest challenge faced by the global research community is how to come up with credible predictions for specific variables that are relevant to society, such as malaria incidence, defined at the appropriate regional and local scales."

The study used a combined epidemiological and hydrological model of developed earlier by Eltahir and former graduate student Arne Bomblies, now an assistant professor at the University of Vermont. The model uses detailed information about rainfall, temperature, wind, topography and soils at the village scale. It simulates mosquito behavior by tracking the location, biting, infective status and reproduction cycle of individual female mosquitoes on an hourly basis and includes variables describing humans and other animals that serve as sources of blood meals for mosquitos. Eltahir and Bomblies tested the model using extensive field data gathered from representative villages in Niger over two years, including adult mosquito abundance, observations of pools, and meteorological and soil-moisture measurements.

To incorporate regional data into the model, Yamana took daily satellite data and broke it down into hourly increments so the model could use hourly rainfall to simulate formation of breeding pools. She established baseline current climate conditions by feeding the model satellite data for five climate zones—starting at the southern fringes of the Sahara and moving south through the Sahel transitional zone into the wetter regions of the Guinean coast.

She then repeated the simulations using long-term temperature and rainfall predictions taken from global climate models, which predict a temperature increase in West Africa from 2 to 6 degrees Celsius by the end of the century, and rainfall changes ranging from large reductions to moderate or large increases. Working on the assumption that future rainfall levels will fall somewhere in between, Yamana and Eltahir identified the rainfall and temperature changes that would create the best and worst environmental suitability for malaria in each of the five zones.

They found that on the southern border of the Sahara, temperatures will become too hot for the survival of Anopheles funestus and Anopheles gambiae sensu lato, the most common malaria-carrying species in Africa. As a result, any likely changes in rainfall would have only a minor impact on malaria.

On the other extreme, hotter temperatures in the southern zone close to the Guinean coast will speed the development of the malaria parasite, improving environmental suitability for malaria regardless of changes in rainfall. However, this area is already heavily saturated with the disease, so the impact is expected to be minimal unless this region experiences an influx of people from the north.

Between these two extremes, the opposing impacts of warming temperature and increasing rainfall are likely to cancel each other, minimizing the impact on disease transmission along the transitional Sahel zone.

The researchers point out that their study does not take into account possible changes in population, migration, economics, health care and other socioeconomic factors.

"Many countries in this region are very underdeveloped and people are much more vulnerable to changes in the environment than people in more developed areas," Yamana says. "If these countries become fully developed and are no longer vulnerable to vector-borne diseases, or is completely eradicated, that would be fantastic news. But I don't think we can count on either of these things happening in the near future."

Explore further: Hopes, fears, doubts surround Cuba's oil future

Related Stories

Climate-change effects on malaria risk

Feb 03, 2012

A new study suggests that climate change, driven by greenhouse-gas emissions and land-use changes, will cause patterns of malaria infection to change over the next 50 years.

How to fight malaria by changing the environment

Dec 19, 2008

(PhysOrg.com) -- Modifying the environment by using everything from shovels and plows to plant-derived pesticides may be as important as mosquito nets and vaccinations in the fight against malaria, according to a computerized ...

New approach alters malaria maps

Feb 19, 2013

Identifying areas of malarial infection risk depends more on daily temperature variation than on the average monthly temperatures, according to a team of researchers, who believe that their results may also apply to environmentally ...

Climate model to predict malaria outbreaks in India

Apr 02, 2012

Scientists from the University of Liverpool are working with computer modelling specialists in India to predict areas of the country that are at most risk of malaria outbreaks, following changes in monsoon rainfall.

Recommended for you

Hopes, fears, doubts surround Cuba's oil future

8 hours ago

One of the most prolific oil and gas basins on the planet sits just off Cuba's northwest coast, and the thaw in relations with the United States is giving rise to hopes that Cuba can now get in on the action.

New challenges for ocean acidification research

Dec 19, 2014

Over the past decade, ocean acidification has received growing recognition not only in the scientific area. Decision-makers, stakeholders, and the general public are becoming increasingly aware of "the other carbon dioxide ...

Compromises lead to climate change deal

Dec 19, 2014

Earlier this month, delegates from the various states that make up the UN met in Lima, Peru, to agree on a framework for the Climate Change Conference that is scheduled to take place in Paris next year. For ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Anonym
1 / 5 (4) Sep 16, 2013
The next IPCC report is said to ratchet down the predicted sensitivity of climate to CO2 levels by half --- perhaps because temperatures for the past 17 years have plateaued despite sharply rising CO2 levels which should have resulted in much higher temps according to the old models. Does this mean the malaria study is moot?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.