Computer simulations indicate calcium carbonate has a dense liquid phase (w/ Video)

Aug 22, 2013 by Dan Krotz
This is an artistic rendition of liquid-liquid separation in a supersaturated calcium carbonate solution. New research suggests that a dense liquid phase (shown in red in the background and in full atomistic detail based on computer simulations in the foreground) forms at the onset of calcium carbonate crystallization. Credit: Berkeley Lab

Computer simulations conducted at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) could help scientists make sense of a recently observed and puzzling wrinkle in one of nature's most important chemical processes. It turns out that calcium carbonate—the ubiquitous compound that is a major component of seashells, limestone, concrete, antacids and myriad other naturally and industrially produced substances—may momentarily exist in liquid form as it crystallizes from solution.

Calcium carbonate is a huge player in the planet's carbon cycle, so any new insight into how it behaves is potentially big news. The prediction of a dense liquid phase during the conversion of calcium carbonate to a solid could help scientists understand the response of to changes in due to rising atmospheric CO2 levels. It could also help them predict the extent to which geological formations can act as reservoirs, among other examples.

The research is published in the August 23 issue of the journal Science. It was performed in support of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center established at Berkeley Lab by the U.S. Department of Energy.

The research may also reconcile some confounding . For more than a century, scientists believed that crystals nucleate from solution by overcoming an . But recent studies of calcium carbonate revealed the presence of nanoscopic clusters which, under certain conditions, appear to circumvent the barrier by following an alternative aggregation-based crystallization pathway.

This video is not supported by your browser at this time.
Recent molecular dynamics simulations suggest that under the right conditions, calcium carbonate may briefly exist in liquid form as it crystallizes. In this simulation, red and blue carbonate ions and yellow calcium ions come together in a dense liquid phase as a precursor to amorphous calcium carbonate. Credit: Berkeley Lab

"Because nucleation is ubiquitous in both natural and synthetic systems, those findings have forced diverse scientific communities to reevaluate their longstanding view of this process," says the study's co-corresponding author Jim De Yoreo, formerly of Berkeley Lab and now a scientist at Pacific Northwest National Laboratory.

The Berkeley Lab-led team used molecular dynamics simulations to study the onset of calcium carbonate formation. The simulations predict that in sufficiently supersaturated calcium carbonate solutions, nanoscale dense liquid droplets can spontaneously form. These droplets then coalesce to form an amorphous solid prior to crystallization.

The findings support the aggregation-based mechanism of calcium carbonate formation. They also indicate that the presence of the nanoscale phase is consistent with a process called liquid-liquid separation, which is well known in alloys and polymers, but unexpected for salt solutions.

"Our simulations suggest the existence of a dense liquid form of ," says co-corresponding author Adam Wallace. He conducted the research while a post-doctoral researcher in Berkeley Lab's Earth Sciences Division, and is now an assistant professor in the Department of Geological Sciences at the University of Delaware.

"This is important because it is an as-yet unappreciated component of the carbon cycle," adds Wallace. "It also provides a means of explaining the unusual presence of nanoscale clusters in solution within the context of established physical mechanisms."

Explore further: Technique simplifies the creation of high-tech crystals

More information: The research, "Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions" is published in the August 23, 2013 issue of the journal Science.

Related Stories

Calcium carbonate and climate change

Aug 30, 2010

( -- What links sea urchins, limestone and climate change? The common thread is calcium carbonate, one of the most widespread minerals on Earth. UC Davis researchers have now measured the energy changes among ...

Theory of crystal formation complete again

Feb 19, 2013

(—Exactly how a crystal forms from solution is a problem that has occupied scientists for decades. Researchers at Eindhoven University of Technology (TU/e), together with researchers from Germany ...

Recommended for you

New approach to form non-equilibrium structures

11 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

12 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Unleashing the power of quantum dot triplets

16 hours ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Chemist develops X-ray vision for quality assurance

16 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

17 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

User comments : 0