Researchers discover quantum algorithm that could improve stealth fighter design

Aug 20, 2013

(Phys.org) —Researchers at the Johns Hopkins University Applied Physics Laboratory (APL) have devised a quantum algorithm for solving big linear systems of equations. Furthermore, they say the algorithm could be used to calculate complex measurements such as radar cross sections, an ability integral to the development of radar stealth technology, among many other applications. Their research is reported in the June 18 issue of Physical Review Letters.

The field of is still relatively young. First proposed in the 1980s, a quantum computer harnesses the principles of quantum mechanics (the physics of very small things like electrons and photons) to process information significantly faster than traditional computers. A has a memory made up of bits (units of information), where each bit represents either a one or a zero. A quantum computer maintains a sequence of qubits. Similar to a bit, a single qubit can represent a one or a zero, but it can also represent any of these two states, meaning it can be both a one and a zero simultaneously.

While several few- systems have been built, a full-scale quantum computer is still years away. Qubits are difficult to manipulate, since any disturbance causes them to fall out of their or "decohere," and their behavior can no longer be explained by quantum mechanics. Other larger-scale nonuniversal computers have been built—including the much-heralded D-Wave computer, purchased by NASA and Google last month—but none of them currently have the power to replace classical computers.

Theoretical breakthroughs in design are few and far between. In 1994 Peter Shor introduced a method for finding the prime factors of large numbers—a capability that would render modern cryptography vulnerable. Fifteen years later, MIT researchers presented the Quantum Linear Systems Algorithm (QLSA), which promised to bring the same type of efficiency to systems of linear equations—whose solution is crucial to image processing, video processing, signal processing, robot control, weather modeling, genetic analysis and population analysis, to name just a few applications.

"But it didn't quite deliver; based on their process, no one could figure out how to get a useful answer out of the computer," explains APL's David Clader, who, along with Bryan Jacobs and Chad Sprouse, wrote "Preconditioned Quantum Linear System Algorithm."

As presented, the algorithm had three features that made it dif?cult to apply to generic problem speci?cations and achieve the promised exponential speedup, they wrote. Technical details with setting up the problem on a quantum computer made it unclear how one would apply it to a real-world calculation. In addition, the promise of exponential speedup was only true for a very restricted set of that typically don't exist in real-world problems. Finally, getting a useful answer from the calculation proved to be quite difficult due to intricacies with the inherently probabilistic nature of quantum measurement.

In their paper, the authors describe how they were able to solve each of these issues and extract useful information from the solution. Furthermore, they demonstrated the applicability of the algorithm by showing how to encode the problem of calculating the electromagnetic scattering cross-section, also known as radar cross section (RCS).

RCS measurements have become increasingly important to the military. It refers to the power that would be returned by an object when illuminated with radar. The power indicates how well the radar can detect or track that target, so there are ongoing efforts to reduce the RCS of such objects as missiles, ships, tanks and aircraft. With a quantum computer, APL researchers have now shown that these calculations can be done much faster and model much more complex objects than would be possible using even the most powerful classical supercomputers.

The work was funded by the Intelligence Advanced Research Projects Activity under its Quantum Computer Science program, which explores questions relating to the computational resources required to run quantum algorithms on realistic quantum computers.

Explore further: Quantum communication controlled by resonance in 'artificial atoms'

More information: dx.doi.org/10.1103/PhysRevLett.110.250504

Related Stories

Quantum algorithm breakthrough

Feb 24, 2013

An international research group led by scientists from the University of Bristol, UK, and the University of Queensland, Australia, has demonstrated a quantum algorithm that performs a true calculation for the first time. ...

Efficient distributed quantum computing

Feb 21, 2013

(Phys.org)—A quantum computer doesn't need to be a single large device but could be built from a network of small parts, new research from the University of Bristol has demonstrated. As a result, building ...

Scientists realize quantum bit with a bent nanotube

Jul 29, 2013

One of the biggest challenges in quantum science is to build a functioning quantum bit, the basic element for the quantum computer. An important theoretical candidate for such a quantum bit is using a bent ...

Recommended for you

Physicists discuss quantum pigeonhole principle

Jul 26, 2014

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Unleashing the power of quantum dot triplets

Jul 24, 2014

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Exotic state of matter propels quantum computing theory

Jul 23, 2014

So far it exists mainly in theory, but if invented, the large-scale quantum computer would change computing forever. Rather than the classical data-encoding method using binary digits, a quantum computer would process information ...

Quantum leap in lasers brightens future for quantum computing

Jul 22, 2014

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Boosting the force of empty space

Jul 22, 2014

Vacuum fluctuations may be among the most counter-intuitive phenomena of quantum physics. Theorists from the Weizmann Institute (Rehovot, Israel) and the Vienna University of Technology propose a way to amplify ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

baudrunner
1 / 5 (2) Aug 20, 2013
"But it didn't quite deliver; based on their process, no one could figure out how to get a useful answer out of the computer,"
They are thinking generically. Obviously these are smart guys, but smart guys building a computer that couldn't solve certain problems.

Now some smart guys have a solution that works, but they can't seem to be able to find the right platform for the job.

The solution to that issue is that with today's technologies, we should be able to make cost feasible the design and construction of problem-specific computers.
DonGateley
1 / 5 (3) Aug 20, 2013
Sad that the first application to come to their mind is killing. We're a hopeless case.
Matthewwa25
1 / 5 (2) Aug 21, 2013
I want them to create the body for the skylon ;) Cheap space travel for all.