Efficient distributed quantum computing

Efficient distributed quantum computing

(Phys.org)—A quantum computer doesn't need to be a single large device but could be built from a network of small parts, new research from the University of Bristol has demonstrated. As a result, building such a computer would be easier to achieve.

Many groups of research scientists around the world are trying to build a quantum computer to run algorithms that take advantage of the strange effects of quantum mechanics such as entanglement and superposition.  A quantum computer could solve problems in chemistry by simulating many body , or break modern cryptographic schemes by quickly factorising large numbers.

Previous research shows that if a is to offer an exponential speed-up over classical computing, there must be a large entangled state at some point in the computation and it was widely believed that this translates into requiring a single large device.

In a paper published today in Proceedings of the Royal Society A, Dr Steve Brierley of Bristol's School of Mathematics and colleagues  show that, in fact, this is not the case.  A network of small quantum computers can implement any quantum algorithm with a small overhead.

The key breakthrough was learning how to efficiently move quantum data between the many sites without causing a collision or destroying the delicate superposition needed in the computation.  This allows the different sites to communicate with each other during the computation in much the same way a parallel would do.

Dr Brierley said: "Building a computer whose operation is based on the laws of is a daunting challenge.  At least now we know that we can build one as a network of small modules."


Explore further

Quantum computing with recycled particles

More information: Beals, R. et al. Efficient Distributed Quantum Computing, Proceedings of the Royal Society A: rspa.royalsocietypublishing.or … 53/20120686.abstract

Arxiv: arxiv.org/abs/1207.2307

Citation: Efficient distributed quantum computing (2013, February 21) retrieved 20 October 2019 from https://phys.org/news/2013-02-efficient-quantum.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
1 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more