Genomic and computational tools provide window to distant past

Aug 09, 2013 by Marlene Cimons
Matthew Hahn is associate professor of biology and informatics at Indiana University at Bloomington. Credit: Indiana University

Out of the estimated 23,000 or more genes in the human genome, about 100 of them will differ—they will be present or not—between any two individuals. Genes lost or gained over time result from evolution and adaptation, as species respond through the years to their environment and other influences.

The availability of genomic sequences now allows scientists to study the presence or absence of whole genes among individuals and between species, and the impact of such changes for evolution.

Some individuals, for example, have a sharper than others because they have more copies of , which allow them to detect a wider range of odors. Others, especially those who live in societies with starchy diets, have more copies of the gene responsible for producing amylase, an enzyme in that breaks down starch.

"There have been lots of changes, and we want to know which ones might have been involved in ," says Matthew Hahn, an associate professor of biology and informatics at Indiana University at Bloomington. "The comparison of whole genomes has revealed large and frequent changes in the size of . Comparative genomic analyses allow us to identify large-scale patterns of change in gene families, and to make inferences regarding the role of in gene gain and loss."

Using computer models and available , Hahn studies the differences in genes among humans and other species, and compares them, in order to better understand the timeline of genetic changes and adaptation throughout our history. By developing computational and statistical tools to analyze whole genomes, Hahn and his team are learning new things about the evolution of and gene families, human genomic history, and the evolution of phenotypically important genes.

"We can't go back in time, but we can use current species to get a pretty good estimate of what the ancestors looked like, and to get some ideas of what changes occurred and the order of these changes," he says.

The scientists are examining all the genes in the , and focusing on differences among species, such as chimpanzees and other primates compared to humans. "There's a 6 percent difference between humans and chimps in the genes they have," he says. "In the end, after 6 million years of being separate, we don't have exactly the same set of genes as chimps. How and when did those differences occur?"

Hahn is conducting his research under a National Science Foundation (NSF) Faculty Early Career Development (CAREER) award, which he received in 2009 as part of NSF's American Recovery and Reinvestment Act funding. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education, and research within the context of the mission of their organization. He is receiving about $1 million over five years.

The work could have wide-ranging applications in diagnosing and treating diseases, since many illnesses and conditions arise from genetic mutations, including the duplication or loss of important genes.

"There is a lot of interest in trying to associate these changes to human diseases," Hahn says. "There are diseases that are caused when you lose or even gain a gene, not just affecting smell or the ability to digest starch. A lot of the genes that differ in copy number are genes involved in our immune response, and these are obvious candidates for the genetic changes underlying differences in disease susceptibility among individuals. By understanding normal variation in gene copy-number, we hope to be able to better recognize changes that may be detrimental to human health."

The researchers often start by examining the differences in the number of copies of different genes among individual humans.

"The 1,000 Genomes Project (an international research effort, launched in 2008, to establish the most detailed catalogue of human genetic variation) has allowed us to study the full genetic complement of genes in a wide variety of human populations, from all of the inhabited continents," he says. "We find differences between individuals within populations and among populations, largely recapitulating the known relationships among humans.

"But we also find population-specific changes in genes that have allowed us to adapt to our surroundings," he adds. "These changes have involved both the adaptive gain and adaptive loss of genes, and are associated with important phenotypic differences among individuals."

To understand the differences shared among all humans, and that distinguish us from our ancestors, the researchers then compare the full complement of to those of other primates, including chimpanzees, orangutans, macaques and marmosets.

"These comparisons, and similar ones to other new genomes that are being sequenced all the time, allow us to make strong inferences about what our common ancestral genome looked like, and, therefore, the changes that have occurred along the human lineage," he says.

Such are highly likely to have been involved in human-specific adaptations, for example, humans' increased cranium size, according to Hahn.

"Having these genomic and computational tools gives us a window into the distant past that we otherwise would not have had," he says.

Explore further: Final pieces to the circadian clock puzzle found

Related Stories

Evolution's toolkit seen in developing hands and arms

Jul 03, 2013

Thousands of sequences that control genes are active in the developing human limb and may have driven the evolution of the human hand and foot, a comparative genomics study led by Yale School of Medicine researchers has found

'Junk DNA' defines differences between humans and chimps

Oct 25, 2011

For years, scientists believed the vast phenotypic differences between humans and chimpanzees would be easily explained – the two species must have significantly different genetic makeups. However, when ...

Genetic switches play big role in human evolution

Jun 12, 2013

(Phys.org) —A Cornell study offers further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles ...

Recommended for you

'Most famous wheat gene' found

6 hours ago

Washington State University researchers have found "the most famous wheat gene," a reproductive traffic cop of sorts that can be used to transfer valuable genes from other plants to wheat.

Mosses survive climate catastrophes

12 hours ago

Mosses have existed on Earth for more than 400 million years. During this period they survived many climate catastrophes that wiped out more robust organisms such as, for example, dinosaurs. Recently, British ...

Final pieces to the circadian clock puzzle found

Sep 14, 2014

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

Measuring modified protein structures

Sep 14, 2014

Swiss researchers have developed a new approach to measure proteins with structures that change. This could enable new diagnostic tools for the early recognition of neurodegenerative diseases to be developed.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

verkle
1 / 5 (2) Aug 09, 2013
This is bogus science. None of these assumptions can be replicated or confirmed. Folks---let's stick to real science.