New findings on how the ear hears could lead to better hearing aids

August 20, 2013
A healthy ear is much better at detecting and transmitting sound than even the most advanced hearing aid. But now researchers reporting in the August 20 issue of the Biophysical Journal, a Cell Press publication, have uncovered new insights into how the ear -- in particular, the cochlea -- processes and amplifies sound. The findings could be used for the development of better devices to improve hearing. Credit: Biophysical Journal, Dong et al.

A healthy ear is much better at detecting and transmitting sound than even the most advanced hearing aid. But now researchers reporting in the August 20 issue of the Biophysical Journal, a Cell Press publication, have uncovered new insights into how the ear—in particular, the cochlea—processes and amplifies sound. The findings could be used for the development of better devices to improve hearing.

Sound-sensing cells within the cochlea—called hair cells due to the presence of cilia on their membrane surfaces—vibrate strongly at different sound frequencies depending on their location. To examine the cochlear electro-mechanics responsible for this process, Dr. Elizabeth Olson and Dr. Wei Dong, both of Columbia University, designed that could simultaneously measure small and cell-generated voltages at specific locations within the ears of live gerbils.

It was previously shown that the pivoting of cilia on a hair cell mechanically opens ion channels in the cell membrane, allowing the current to flow and generate voltage. This sends a signal to a nerve cell, which relays the specific sound frequency signal to the brain. In addition, energy released by hair cell voltage feeds back to amplify the motion specific to that location's frequency, thus driving additional movement of the local .

Dr. Dong and Dr. Olson discovered that a shift in the timing of this feedback voltage activates amplification at the right frequencies. With the shift, hair cell forces pump energy into cochlear motion, much like a child increases a swing's motion by pumping his legs at the right time. In addition to detecting the amplification trigger, the researchers' sensors verified the amplification that results.

Today's —which send amplified signals to the whole cochlea—cannot duplicate this location- and frequency-specific amplification, and understanding how the cochlea accomplishes this may lead to major advances.

"Several groups around the world are devising electromechanical cochlear prostheses, or next-generation cochlear implants. Understanding the micro-mechanical machine of the natural cochlea will inspire and guide these developments," says Dr. Olson.

Explore further: St. Jude finds 'dancing' hair cells are key to humans' acute hearing

More information: Biophysical Journal, Dong et al.: "Detection of Cochlear Amplification and Its Activation." dx.doi.org/10.1016/j.bpj.2013.06.049

Related Stories

It's not over when it's over: Storing sounds in the inner ear

April 5, 2011

Research shows that vibrations in the inner ear continue even after a sound has ended, perhaps serving as a kind of mechanical memory of recent sounds. In addition to contributing to the understanding of the complex process ...

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.