Cobalt replacements make solar cells more sustainable

Aug 02, 2013
The dye-sensitized solar cell (DSC) converts light to electricity. A coloured copper complex absorbs light and injects an electron into a semiconductor. This electron then passes around a circuit, does work, and is eventually returned to the copper to regenerate the dye by a transport system. In this new work, the cobalt complex acts as an electron transport agent between the cathode and the dye molecules allowing the photocurrent to flow. Credit: Bozic-Weber et al.

Researchers at the University of Basel have successfully replaced the rare element iodine in copper-based dye-sensitized solar cells by the more abundant element cobalt, taking a step forward in the development of environmentally friendly energy production. The journal Chemical Communications has published the results of these so-called Cu-Co cells.

Dye-sensitized (DSCs) transform light to electricity. They consist of a semiconductor on which a dye is anchored. This colored complex absorbs light and through an process produces electrical current. Electrolytes act as electron transport agents inside the DSCs.

Usually, iodine and iodide serve as an electrolyte. Chemists at the University of Basel have now been able to successfully replace the usual iodine-based electron transport system in copper-based DSCs by a cobalt compound. Tests showed no loss in performance.

The replacement of iodine significantly increases the sustainability of solar cells: "Iodine is a rare element, only present at a level of 450 parts per billion in the Earth, whereas cobalt is 50 times more abundant", explains the Project Officer Dr. Biljana Bozic-Weber. Furthermore, this replacement also removes one of the long-term in which copper compounds react with the electrolyte to form copper iodide and thus improves the long-term stability of DSCs.

The research group around the Basel chemistry professors Ed Constable and Catherine Housecroft is currently working on optimizing the performance of DSCs based on copper complexes. They had previously shown in 2012 that the very ruthenium in solar cells could be replaced by copper derivatives.

This is the first report of DSCs, which combine copper-based dyes and cobalt electrolytes and thus represents a critical step towards the development of stable iodide-free copper solar cells. However, many aspects relating to the efficiency need to be addressed before commercialization can begin in anything other than niche markets.

Molecular systems engineering

"In changing any one component of these solar cells, it is necessary to optimize all other parts as a consequence", says Ed Constable. This is part of a new approach termed "Molecular Systems Engineering" in which all molecular and material components of a system can be integrated and optimized to approach new levels of sophistication in nanoscale machinery. In this publication, the engineering of the electrolyte, the dye and the semiconductor are all described.

This systems chemistry approach is particularly appropriate for the engineering of inorganic-biological hybrids and is the basis of ongoing collaborations with the ETH Department of Biosystems Engineering in Basel (D-BSSE) and EMPA. A joint proposal by the University of Basel and D-BSSE for a new National Centre of Competence in Research in this area is currently in the final stages of appraisal.

Explore further: Building the ideal rest stop for protons

More information: Bozic-Weber, B. et al. Copper(I) dye-sensitized solar cells with [Co(bpy)3]2 /3 electrolyte, Chem. Commun., 2013,49, 7222-7224. DOI: 10.1039/C3CC44595J

Related Stories

Dye-sensitized solar cells break a new record

Nov 14, 2011

(PhysOrg.com) -- Dye-sensitized Grätzel solar cells have just set a new efficiency benchmark. By changing the composition and color of the cells, an EPFL team has increased their efficiency to more than ...

DSC recipe brings good news to solar cell economics

Nov 06, 2011

A discovery in how to make solar cells cheap enough to boost the use of solar energy looks promising according to experts. The design represents an inexpensive process making use of an organic, printed dye ...

Recommended for you

Building the ideal rest stop for protons

14 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

16 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Shakescene21
2.3 / 5 (3) Aug 02, 2013
Excellent. Step by step we're building the technology to make photovoltaics a major player in the energy field. Cobalt is much more abundant than iodine, and cobalt-based cells are expected to last longer (which might be even more important). Buried in the article it's mentioned that the researchers had earlier developed copper derivitives to replace the ruthenium used in these dyes. I hope I'll have these on my roof someday.