Bio-assisted nanophotocatalyst for hydrogen production

August 9, 2013
Bio-assisted nanophotocatalyst for hydrogen production

A protein found in the membranes of ancient microorganisms that live in desert salt flats could offer a new way of using sunlight to generate environmentally friendly hydrogen fuel. Researchers in the Nanobio Interfaces and Nanophotonics groups at Argonne National Laboratory combined the light-harvesting proton pump bacteriorhodopsin (bR) on a Pt/TiO2 nanocatalyst for visible light-driven hydrogen generation. The platinum nanocatalyst matrix is comprised of bR and 4 nm Pt(0) nanoparticles photodeposited on the surface of 25-nm TiO2 nanoparticles. Photoelectrochemical and transient absorption studies indicate efficient charge transfer between bR protein molecules and titania nanoparticles.

Scientists have been aware of the potential of TiO2 nanoparticles for light-based reactions since the early 1970s, when Japanese researchers discovered that a TiO2 electrode exposed to bright ultraviolet light could split water molecules in a phenomenon that came to be known as the Honda-Fujishima effect. Since then, scientists have made continuous efforts to extend the light reactivity of TiO2 photocatalysts into the visible part of the spectrum.

Bacteriorhodopsin—which is responsible for the unusual purple color of a number of salt flats in California and Nevada—uses sunlight as an energy source that allows it to act as a . Proton pumps are proteins that typically straddle a cellular membrane and transfer protons from inside the cell to the extracellular space. In this study, the protons provided by the bR are combined with at small platinum sites interspersed in the TiO2 matrix. This bio-assisted hybrid photocatalyst outperforms many other similar systems in and could be a good candidate for fabrication of green energy devices that consume virtually infinite sources—saltwater and sunlight.

Explore further: Algal protein gives boost to electrochemical water splitting

More information: Balasubramanian, S. et al. Nano Lett., 13, 3365 (2013).

Related Stories

Algal protein gives boost to electrochemical water splitting

December 19, 2011

Photosynthesis is considered the 'Holy Grail' in the field of sustainable energy generation because it directly converts solar energy into storable fuel using nothing but water and carbon dioxide (CO2). Scientists have long ...

New material approach should increase solar cell efficiency

April 23, 2013

(Phys.org) —A University of Illinois research group brought together aspects of condensed matter physics, semiconductor device engineering, and photochemistry to develop a new form of high-performance solar photocatalyst ...

Recommended for you

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.