Bio-assisted nanophotocatalyst for hydrogen production

Aug 09, 2013
Bio-assisted nanophotocatalyst for hydrogen production

A protein found in the membranes of ancient microorganisms that live in desert salt flats could offer a new way of using sunlight to generate environmentally friendly hydrogen fuel. Researchers in the Nanobio Interfaces and Nanophotonics groups at Argonne National Laboratory combined the light-harvesting proton pump bacteriorhodopsin (bR) on a Pt/TiO2 nanocatalyst for visible light-driven hydrogen generation. The platinum nanocatalyst matrix is comprised of bR and 4 nm Pt(0) nanoparticles photodeposited on the surface of 25-nm TiO2 nanoparticles. Photoelectrochemical and transient absorption studies indicate efficient charge transfer between bR protein molecules and titania nanoparticles.

Scientists have been aware of the potential of TiO2 nanoparticles for light-based reactions since the early 1970s, when Japanese researchers discovered that a TiO2 electrode exposed to bright ultraviolet light could split water molecules in a phenomenon that came to be known as the Honda-Fujishima effect. Since then, scientists have made continuous efforts to extend the light reactivity of TiO2 photocatalysts into the visible part of the spectrum.

Bacteriorhodopsin—which is responsible for the unusual purple color of a number of salt flats in California and Nevada—uses sunlight as an energy source that allows it to act as a . Proton pumps are proteins that typically straddle a cellular membrane and transfer protons from inside the cell to the extracellular space. In this study, the protons provided by the bR are combined with at small platinum sites interspersed in the TiO2 matrix. This bio-assisted hybrid photocatalyst outperforms many other similar systems in and could be a good candidate for fabrication of green energy devices that consume virtually infinite sources—saltwater and sunlight.

Explore further: Understanding the source of extra-large capacities in promising Li-ion battery electrodes

More information: Balasubramanian, S. et al. Nano Lett., 13, 3365 (2013).

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Tough foam from tiny sheets

16 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0