Sensitive technique for taking RNA inventory of individual cells offers powerful tool

July 4, 2013
Sensitive single-cell RNA detection techniques could offer insight into how gene expression changes as embryonic stem cells (pictured) begin to develop into more specialized mature tissues. © iStockphoto/Thinkstock

Every cell is a hectic messaging center, with thousands of genes churning out messenger RNA (mRNA) transcripts for translation into functional proteins. Accordingly, sequencing the mRNA content of an individual cell can reveal critical insights into that cell's health and physiological state.

Unfortunately, as cells contain only tiny amounts of mRNA, on the order of ten trillionths of a gram, accurate quantitation is a major challenge. By introducing critical improvements to existing techniques, however, a research team led by Hiroki Ueda and Yohei Sasagawa at the RIKEN Center for Developmental Biology has now devised a robust and reproducible approach for surveying the mRNA content of individual cells.

Several whole-transcriptome shotgun sequencing methods are available for performing RNA analyses on large numbers of cells. These high-throughput sequencing technologies, known as RNA-Seq, can be adapted for the single-cell scale by using an enzymatic process called the (PCR) to amplify small amounts of mRNA, but even the most efficient methods tend to be laborious and error-prone. "Multiple PCR assays are required for a single cell, and purification is needed to remove unexpected byproducts," explains Sasagawa, now based at the RIKEN Advanced Center for Computing and Communication. Such inefficiencies lead to inconsistent results, making it difficult to distinguish meaningful differences in gene expression from .

To overcome these limitations, the researchers designed a dramatically improved single-cell RNA-Seq technique with optimized reaction conditions, and introduced failsafe mechanisms to ensure that mRNA is efficiently amplified without generating confounding artifacts. Their 'Quartz-Seq' method enabled them to characterize the total mRNA content of individual (ESCs) with unprecedented reproducibility across experiments.

The Quartz-Seq method could readily distinguish between ESCs and more developmentally mature 'primitive endoderm' cells based on gene expression as with other RNA-Seq methods. However, Quartz-Seq is also able to measure clear differences in gene expression among multiple ESCs at different stages in the cell cycle. The researchers could even confidently distinguish true variations in gene activity among seemingly identical cells, demonstrating the sensitivity of the method. "Global gene expression heterogeneity may contain important biological information about cell fate, culture environment and drug response," says Sasagawa. "We showed that single-cell Quartz-Seq can detect this heterogeneity."

The Quartz-Seq method is already proving valuable for exploring genetic differences among individual cells. In the future, Ueda and Sasagawa hope to further streamline Quartz-Seq and expand their technique to detect other classes of RNA.

Explore further: New technique used to profile anthrax genome

More information: 1.Sasagawa, Y., Nikaido, I., Hayashi, T., Danno, H., Uno, K. D., Imai, T., Ueda, H. R. Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biology 14, R31 (2013). dx.doi.org/10.1186/gb-2013-14-4-r31

Related Stories

New technique used to profile anthrax genome

March 20, 2009

Scientists at the Georgia Institute of Technology have used a new approach, known as RNA-Seq, to profile the gene expression of the bacterium that causes anthrax, Bacillus anthracis. Their study, published March 20, 2009, ...

Single-cell sequencing

May 22, 2013

When studying any kind of population—people or cells—averaging is a useful, if flawed, form of measurement. According to the US Census Bureau, the average American household size in 2010 was 2.59. Of course, there are ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.