Laser guided codes advance single pixel terahertz imaging

Jun 25, 2013
A new method for single pixel terahertz (THz) imaging developed by Boston College researchers uses a set of instructions delivered by a laser beam to tune THz waves in order to produce new types of THz images. During the imaging method devised by the team, THz waves pass through an object (a); then they strike a silicon semiconductor (b) given specific instructions about how to sample the image; that data is passed along in order to digitally reconstruct an image (c) of the original object in just a few seconds. Credit: Claire M. Watts, Boston College

The universe is awash in terahertz (THz) waves, as harmless as they are abundant. But unlike other regions of the electromagnetic spectrum, THz has proven to be extremely difficult to manipulate in order to capture novel images of objects and materials with which these light waves interact.

Most existing THz imaging devices employ prohibitively expensive technology or require several hours and cumbersome manual controls in order to generate a viable image, according to Boston College Professor of Physics Willie J. Padilla.

Padilla and researchers in his lab recently reported a breakthrough in efforts to create accessible and effective THz imaging. Using both optical and electronic controls, the team developed a single-pixel imaging technique that uses a coded aperture to quickly and efficiently manipulate stubborn THz waves, according to a recent report in the journal Optics Express.

In the so-called terahertz gap, a region of wavelengths that falls between microwave and infrared frequencies, conventional and are ineffective. Some systems capture only a fraction of a scene and the means to tune these THz waves are inefficient. This has fueled the search for new in order to manipulate THz waves.

Efforts to overcome the challenges of mechanics, cost and image clarity are viewed as a crucial step in efforts to tame the THz gap since imaging and sensing at this frequency holds the potential for advances in areas as divergent as chemical fingerprinting, of hidden weapons, even real-time skin imaging to promote simple detection of .

This video is not supported by your browser at this time.
A new method for single pixel terahertz (THz) imaging developed by Boston College researchers uses a set of instructions delivered by a laser beam to tune THz waves in order to produce new types of THz images. During the imaging method devised by the team, THz waves pass through an object (a); then they strike a silicon semiconductor (b) given specific instructions about how to sample the image; that data is passed along in order to digitally reconstruct an image (c) of the original object in just a few seconds. Credit: Claire M. Watts, Boston College

Central to this challenge is the development of a technology to create efficient masks – similar to the aperture of a camera—capable of tuning THz radiation in order to produce clear images in just a few seconds.

Padilla and graduate students David Shrekenhamer and Claire M. Watts report their new single pixel imaging method centers on what they describe as a "coded aperture multiplex technique" where a laser beam and electronic signals are used to send a set of instructions to a semiconductor so it can guide the reproduction of the image of an object after THz waves have passed through it.

A digital micro-mirror device encodes the laser beam with instructions that direct certain segments of the silicon mask to react and allow a selected sample of the THz waves to pass freely through, consistent with the image pattern. The combination of optical instructions and the reaction of the semiconductor create a THz spatial light modulator, the team reports. Functioning like the aperture of a conventional camera, the modulator then guides the digital reconstruction of the entire image based on a broad sampling of THz waves that have passed through the object.

The team's experiments found the method could produce masks of varying resolutions, ranging from 63 to 1023 pixels and acquire images at speeds up to .5 Hz, or about 2 seconds. The early findings "demonstrate the viability of obtaining real-time and high-fidelity THz images using an optically controlled SLM with a single pixel detector," the team concluded.

Padilla said the findings have spurred additional research by his lab into ways to further control THz waves, such as by using the intricate patterns of an engineered metamaterial to further manipulate terahertz waves to create images faster and with increased efficiency.

Explore further: New imaging technique shows how cocaine shuts down blood flow in mouse brains

Related Stories

Terahertz imaging goes the distance

Apr 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, ...

Photonics: strong vibrations

May 10, 2012

A new approach to generating terahertz radiation will lead to new imaging and sensing applications. The low energy of the radiation means that it can pass through materials that are otherwise opaque, opening ...

Using terahertz imaging to seek quirks in corks at NJIT

Dec 08, 2010

As the holidays approach and you're buying wine, ever wonder what's really in a cork? Ask NJIT's John Federici, who has a new use for Terahertz imaging: searching for divots and cracks in wine corks to insure quality.

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Breakthrough in light sources for new quantum technology

Aug 29, 2014

One of the most promising technologies for future quantum circuits are photonic circuits, i.e. circuits based on light (photons) instead of electrons (electronic circuits). First, it is necessary to create ...

User comments : 0