Biochemists identify protease substrates important for bacterial growth and development

Jun 27, 2013
Caulobacter crescentus (above) generates radically different cell types upon division. The ClpXP protease (illustrated below) recognizes and destroys many protein substrates that allow Caulobacter to differentiate into these different cell types. New work identifying scores of new candidate substrates of ClpXP to reveal how protein degradation is critical to cell cycle progression and bacterial development could lead to new antibiotic targets. Credit: Peter Chien, UMass Amherst

(Phys.org) —Reporting this month in Molecular Microbiology, Peter Chien and colleagues at the University of Massachusetts Amherst describe using a combination of biochemistry and mass spectrometry to "trap" scores of new candidate substrates of the protease ClpXP to reveal how protein degradation is critical to cell cycle progression and bacterial development. The new understanding could lead to identifying new antibiotic targets.

As Chien (pronounced Chen) explains, to carry out fundamental life processes such as growing and dividing, cells must orchestrate, in time and location, the production and degradation of hundreds of protein substrates. Even in simple , is critical for making sure these organisms can grow and respond to their environment properly.

Scientists have known that a group of protein machines called energy-dependent proteases are responsible for the majority of this degradation, but what targets these machines recognize and how they do it has been unknown in many cases.

With the new series of experiments in the model bacteria Caulobacter crescentus in the Chien biochemistry and molecular biology laboratory, much more is now understood, he says. "We first generated a mutant that could recognize but not destroy its targets, acting as a 'trap' for protease substrates. After purifying this trap from living cells, we used mass spectrometry to identify proteins that were caught, finding over a hundred new candidate substrates. These targets covered all aspects of , including DNA replication, transcription and cytoskeletal changes."

Next, they focused on one of these new targets in detail, a protein called TacA. Caulobacter grow by making two different cell types every time they divide. TacA is responsible for making sure that one of these cell types forms properly.

"We used biochemistry and highly purified proteins to identify what parts of TacA were important for degradation by the ClpXP protease," Chien says. "We then made mutants of TacA that could not be degraded and found that when we expressed them in bacteria, these cells failed to properly develop into the correct cell types. Because developmental changes are essential for pathogenic bacteria to invade their host, these insights could potentially identify new antibiotic targets."

Explore further: How plant cell compartments change with cell growth

Related Stories

Proteases inside the cell

Mar 25, 2011

(PhysOrg.com) -- A Cardiff-led team has found a unique type of protein inside bacterial cells which could shed new light on organisms such as the disease-causing C. difficile.

Degrading proteins to divide cells

Aug 26, 2011

A group of scientists led by the IRB Barcelona, Spain, researcher Ferran Azora­n has identified the main instrument that Drosophila cells use to define the identity and function of the centromere in the Drosophila. A ...

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0