New insights into how materials transfer heat could lead to improved electronics

May 16, 2013

University of Toronto engineering researchers, working with colleagues from Carnegie Mellon University, have published new insights into how materials transfer heat, which could lead eventually to smaller, more powerful electronic devices.

and other electronic parts have been shrinking in size and growing in complexity and power for decades. But as circuits get smaller, it becomes more difficult to dissipate . For further advances to be made in electronics, researchers and industry need to find ways of tracking heat transfer in products ranging from smart phones to computers to .

Dan Sellan and Professor Cristina Amon, of U of T's Mechanical and Industrial Engineering department, investigated a new tool to measure the thermal and vibrational properties of solids. Working with colleagues from Carnegie Mellon University, they studied materials in which heat is transferred by atomic vibrations in packets called phonons. Their results were recently published in Nature Communications.

"In an analogy to light, phonons come in a spectrum of colors, and we have developed a new tool to measure how different color phonons contribute to the thermal conductivity of solids," said Jonathan Malen, an assistant professor of Mechanical Engineering at CMU.

According to the researchers, the new tool will give both industry and academia a clearer picture of how an electronic device's ability to dissipate heat shrinks with its size, and how materials can be structured at the to change their thermal conductivity.

For example, in the initial demonstration, the team showed that as silicon microprocessors continue to shrink, their operating temperatures will be further challenged by reduced thermal conductivity.

"Our modeling work provides an in-depth look at how individual phonons impact thermal conductivity," said Sellan, who undertook his research as a PhD Candidate in Professor Amon's lab. Currently an NSERC at The University of Texas at Austin, Sellan is developing experimental techniques for thermal measurements.

Professor Amon, who is also Dean of the Faculty of Applied Science & Engineering at U of T, said Sellan's insights will allow researchers to design nanostructured thermoelectric materials with increased efficiency in converting waste heat to electrical energy. This work has exciting implications for the future of nano-scale research."

Explore further: Neutron analysis explains dynamics behind best thermoelectric materials

More information: Paper: www.nature.com/ncomms/journal/v4/n3/full/ncomms2630.html

Related Stories

'Invisible' particles could enhance thermoelectric devices

February 6, 2013

Thermoelectric devices—which can either generate an electric current from a difference in temperature or use electricity to produce heating or cooling without moving parts—have been explored in the laboratory since the ...

Recommended for you

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.