Genome offers clues to amphibian-killing fungus

May 30, 2013 by Krishna Ramanujan
Genome offers clues to amphibian-killing fungus
Harlequin frogs, such as this species (Atelopus glyphus), are highly susceptible to Bd, and many populations have become extinct. Credit: K.R. Zamudio

A fungus that has decimated amphibians globally is much older than previously thought, but may have recently spread through the global wildlife trade to new locations where amphibians have no immunity, reports a new study.

Previous research had suggested that a group of related strains of the fungus Batrachochytrium dendrobatidis (Bd) responsible for the current , called the Global Panzootic Lineage (GPL), resulted from a recent lethal hybridization.

But now, an international team of researchers, including Cornell ecologist Kelly Zamudio, one of the project's (PI), has sequenced the genomes of 29 strains of the Bd fungus worldwide.

The results are published in the May 6 issue of the Proceedings of the National Academy of Sciences.

The findings reveal that the GPL existed long before the current pandemic, possibly descending from an ancestor that originated 26,000 years ago.

"We found a lot more than people knew about," said Zamudio, professor of ecology and , of the sequenced Bd genomes. "It could lead us to a better understanding of what makes it kill. Once we know the of a pathogen, maybe we can understand what makes it such a powerful killer."

The fungus infects some 350 by attacking and degrading their skin, often causing death. Amphibians began dying off at alarming rates in the 1980s, particularly in Australia and South America, and researchers identified Bd as the culprit in 1998.

Genome offers clues to amphibian-killing fungus
The amphibian-killing fungus (Batrachochytrium dendrobatidis) forms zoosporangia in the skin of infected frogs and develop zoospores that are released into the environment and infect other frogs. Credit: E.B. Rosenblum

In the study, a sample from Brazil showed the earliest known divergence from that .

"Early on in the history [of Bd], the Brazil isolate took a different evolutionary path," said Zamudio.

With the genome sequenced, researchers may now begin to pick it apart and understand which genes are more or less active in causing disease.

Though more work is needed, the researchers found variations in genes that secrete peptidases, enzymes that break down proteins, such as skin proteins.

The fungus also has the ability to duplicate certain parts of its genome, but not others, and this replication is greater in the most virulent isolates found in Panama and Costa Rica, where amphibian declines are leading to extinctions.

With the new genetic data, scientists can focus on what recent environmental changes may have played roles in making the pathogen more virulent to its hosts in places where it is endemic and areas devastated by the GPL.

The study provides an example of how modern tools commonly used to understand human diseases may be applied to issues of biodiversity and conservation, she added.

Explore further: Lowly 'new girl' chimps form stronger female bonds

Related Stories

Culture of an amphibian killer

Nov 20, 2012

(Phys.org)—In the November issue of the journal Molecular Ecology, a U.S. and Brazilian research team reported evidence of novel and hybrid strains of a lethal fungus that has decimated amphibian popula ...

Frog trade link to killer fungus revealed

Nov 08, 2011

The global trade in frogs, toads and other amphibians may have accidentally helped create and spread the deadly fungal disease, chytridiomycosis, which has devastated amphibian populations worldwide.

Recommended for you

Estuaries protect Dungeness crabs from deadly parasites

7 hours ago

Parasitic worms can pose a serious threat to the Dungeness crab, a commercially important fishery species found along the west coast of North America. The worms are thought to have caused or contributed to ...

An evolutionary heads-up—the brain size advantage

8 hours ago

A larger brain brings better cognitive performance. And so it seems only logical that a larger brain would offer a higher survival potential. In the course of evolution, large brains should therefore win ...

Our bond with dogs may go back more than 27,000 years

May 21, 2015

Dogs' special relationship to humans may go back 27,000 to 40,000 years, according to genomic analysis of an ancient Taimyr wolf bone reported in the Cell Press journal Current Biology on May 21. Earlier genome ...

Social structure 'helps birds avoid a collision course'

May 21, 2015

The sight of skilful aerial manoeuvring by flocks of Greylag geese to avoid collisions with York's Millennium Bridge intrigued mathematical biologist Dr Jamie Wood. It raised the question of how birds collectively ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.