Why don't beetles freeze in the winter?

May 14, 2013

For 37 years, Queen's University Biochemistry professor Peter Davies has been unraveling the mystery of why some organisms including insects and fish don't freeze in the winter. His research into insect antifreeze protein (AFP) has shed new light in several areas, including a new paper on longhorn beetles native to Siberia.

"Many insects, plants and other organisms owe their survival to AFPs," says Dr. Davies. "This research found the most active AFP to date in the longhorn beetle, which we hypothesize means that, through evolution, AFPs have become more effective."

Working with Queen's PhD candidate Koli Basu and a team from Yale University, Dr. Davies has revealed how these insects and the antifreeze they produce may have evolved to handle temperatures that can drop below -40 degrees Celsius. The beetles produce AFPs to stop the growth of ice that might form in their internal fluids, which lowers the freezing temperature of the insect and prevents freezing related-.

AFPs within these bind to seed ice crystals that form as the weather cools. By binding to the ice, AFPs prevent the ice from spreading and freezing the organism. Many organisms that live in have some level of AFPs including insects, fish, plants, bacteria, algae and fungi.

"My next project is looking at midges, the flies we find in swarms on the Kingston waterfront at this time of year," says Ms. Basu. "We have detected activity in the midges and this could be the first time an AFP has been characterized from flies."

As for practical applications, a manufacturer of ice cream has started adding AFP to its low fat brands to prevent large ice crystals from forming in the ice cream. Dr. Davies says there are many more practical applications including using AFPs during the transportation and storage of other .

The paper was published in the Journal of Biological Chemistry.

Explore further: A closer look at a deadly bacterium sets the stage for new vaccines

Related Stories

Living organisms need antifreeze to survive in the cold

Feb 18, 2013

(Phys.org)—If you thought antifreeze was only something that was necessary to keep your car from freezing up in the winter, think again. Plants and animals living in cold climates have natural antifreeze proteins (AFPs) ...

Finding may end a 30-year scientific debate

Apr 11, 2011

A chance observation by a Queen's researcher might have ended a decades-old debate about the precise way antifreeze proteins (AFP) bind to the surface of ice crystals.

Scientists isolate new antifreeze molecule in Alaska beetle

Dec 14, 2009

Scientists have identified a novel antifreeze molecule in a freeze-tolerant Alaska beetle able to survive temperatures below minus 100 degrees Fahrenheit. Unlike all previously described biological antifreezes that contain ...

Recommended for you

What happens inside a membrane

May 20, 2015

A new SISSA study has achieved two important results with a single effort: to devise an innovative method to analyse the structure of biological proteins immersed in their physiological context, and to closely ...

Biomedical sensors for disease detection made simple

May 19, 2015

Healthcare researchers are increasingly focused on the early detection and prevention of illnesses. Early and accurate diagnosis is vital, especially for people in developing countries where infectious diseases ...

Studying dynamics of ion channels

May 18, 2015

Scientists from the Vaziri lab at the Vienna Biocenter, together with colleagues at the Institute for Biophysical Dynamics at the University of Chicago, have developed a method using infrared spectroscopy ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.