Versatile ceramics offer new directions for emerging applications

Apr 01, 2013 by Jan Gerston
Versatile ceramics offer new directions for emerging applications

(Phys.org) —Research into a versatile class of material, the MAX phases, with a large variety of potential high-temperature and low-friction applications by Dr. Miladin Radovic, his group, and collaborators was featured on in the April 2013 issue of the American Ceramic Society Bulletin.

The cover of this issue showed micrograph of MAX phases by materials science and engineering student Liangfa Hu. Radovic is an associate professor in the Department of Mechanical Engineering, where he was named a Herbert H. Richardson Fellow, and is on the faculty of .

Carbides and nitrides with a layered structure, MAX phases and offer the ability to finely tune materials properties according to the article, "MAX Phases: Bridging the Gap Between Metals and Ceramics."

"MAX phases are elastically stiff, good thermal and , resistance to chemical attack, and have relatively low thermal expansion coefficients. Mechanically, they are relatively soft, and most are readily machinable," according to the article by Radovic and Drexel University's Michel W. Barsoum.

MAX phase materials can be fabricated as bulk materials, powders, porous foams, and , and offer high temperature stability, thermal and shock resistance, crack-healing capabilities, , good machinability, and exceptional oxidation resistance, they lend themselves to high-temperature applications, such as heating elements, gas burner nozzles, and industrial die inserts, high-temperature foil bearings, glove and condom molds, and dry drilling of concrete.

Explore further: Nature inspires a greener way to make colorful plastics

add to favorites email to friend print save as pdf

Related Stories

Magnetic actuation enables nanoscale thermal analysis

Jan 12, 2012

Polymer nano-films and nano-composites are used in a wide variety of applications from food packaging to sports equipment to automotive and aerospace applications. Thermal analysis is routinely used to analyze ...

Materials that shrink when heated

Feb 09, 2012

One common reason that people with fillings experience toothache is that their fillings expand at a different rate to the original tooth when, for example, drinking a hot drink. Contrary to intuition, however, ...

Bandgap engineering for high-efficiency solar cell design

Jun 22, 2012

ZnSnP2, an absorber material for solar cells, transitions from an ordered to a disordered structure at high temperatures. Researchers from University College London and the University of Bath have proposed taking advantage ...

Lab team develops capability for atomistic simulations

Jan 27, 2012

(PhysOrg.com) -- Conventional scientific wisdom says that the interatomic forces between ions that control high-temperature processes such as melting are insensitive to the heating of the electron "glue" that ...

Recommended for you

Nature inspires a greener way to make colorful plastics

4 hours ago

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

New catalyst converts carbon dioxide to fuel

6 hours ago

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

Building the ideal rest stop for protons

Jul 29, 2014

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

Jul 29, 2014

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0