Versatile ceramics offer new directions for emerging applications

Versatile ceramics offer new directions for emerging applications

(Phys.org) —Research into a versatile class of material, the MAX phases, with a large variety of potential high-temperature and low-friction applications by Dr. Miladin Radovic, his group, and collaborators was featured on in the April 2013 issue of the American Ceramic Society Bulletin.

The cover of this issue showed micrograph of MAX phases by materials science and engineering student Liangfa Hu. Radovic is an associate professor in the Department of Mechanical Engineering, where he was named a Herbert H. Richardson Fellow, and is on the faculty of .

Carbides and nitrides with a layered structure, MAX phases and offer the ability to finely tune materials properties according to the article, "MAX Phases: Bridging the Gap Between Metals and Ceramics."

"MAX phases are elastically stiff, good thermal and , resistance to chemical attack, and have relatively low thermal expansion coefficients. Mechanically, they are relatively soft, and most are readily machinable," according to the article by Radovic and Drexel University's Michel W. Barsoum.

MAX phase materials can be fabricated as bulk materials, powders, porous foams, and , and offer high temperature stability, thermal and shock resistance, crack-healing capabilities, , good machinability, and exceptional oxidation resistance, they lend themselves to high-temperature applications, such as heating elements, gas burner nozzles, and industrial die inserts, high-temperature foil bearings, glove and condom molds, and dry drilling of concrete.

Citation: Versatile ceramics offer new directions for emerging applications (2013, April 1) retrieved 27 April 2024 from https://phys.org/news/2013-04-versatile-ceramics-emerging-applications.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Magnetic actuation enables nanoscale thermal analysis

0 shares

Feedback to editors