Versatile ceramics offer new directions for emerging applications

April 1, 2013 by Jan Gerston
Versatile ceramics offer new directions for emerging applications

(Phys.org) —Research into a versatile class of material, the MAX phases, with a large variety of potential high-temperature and low-friction applications by Dr. Miladin Radovic, his group, and collaborators was featured on in the April 2013 issue of the American Ceramic Society Bulletin.

The cover of this issue showed micrograph of MAX phases by materials science and engineering student Liangfa Hu. Radovic is an associate professor in the Department of Mechanical Engineering, where he was named a Herbert H. Richardson Fellow, and is on the faculty of .

Carbides and nitrides with a layered structure, MAX phases and offer the ability to finely tune materials properties according to the article, "MAX Phases: Bridging the Gap Between Metals and Ceramics."

"MAX phases are elastically stiff, good thermal and , resistance to chemical attack, and have relatively low thermal expansion coefficients. Mechanically, they are relatively soft, and most are readily machinable," according to the article by Radovic and Drexel University's Michel W. Barsoum.

MAX phase materials can be fabricated as bulk materials, powders, porous foams, and , and offer high temperature stability, thermal and shock resistance, crack-healing capabilities, , good machinability, and exceptional oxidation resistance, they lend themselves to high-temperature applications, such as heating elements, gas burner nozzles, and industrial die inserts, high-temperature foil bearings, glove and condom molds, and dry drilling of concrete.

Explore further: Magnetic actuation enables nanoscale thermal analysis

Related Stories

Magnetic actuation enables nanoscale thermal analysis

January 12, 2012

Polymer nano-films and nano-composites are used in a wide variety of applications from food packaging to sports equipment to automotive and aerospace applications. Thermal analysis is routinely used to analyze materials for ...

Lab team develops capability for atomistic simulations

January 27, 2012

(PhysOrg.com) -- Conventional scientific wisdom says that the interatomic forces between ions that control high-temperature processes such as melting are insensitive to the heating of the electron "glue" that binds the ions ...

Materials that shrink when heated

February 9, 2012

One common reason that people with fillings experience toothache is that their fillings expand at a different rate to the original tooth when, for example, drinking a hot drink. Contrary to intuition, however, not all materials ...

Bandgap engineering for high-efficiency solar cell design

June 22, 2012

ZnSnP2, an absorber material for solar cells, transitions from an ordered to a disordered structure at high temperatures. Researchers from University College London and the University of Bath have proposed taking advantage ...

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.