Versatile ceramics offer new directions for emerging applications

April 1, 2013 by Jan Gerston
Versatile ceramics offer new directions for emerging applications

(Phys.org) —Research into a versatile class of material, the MAX phases, with a large variety of potential high-temperature and low-friction applications by Dr. Miladin Radovic, his group, and collaborators was featured on in the April 2013 issue of the American Ceramic Society Bulletin.

The cover of this issue showed micrograph of MAX phases by materials science and engineering student Liangfa Hu. Radovic is an associate professor in the Department of Mechanical Engineering, where he was named a Herbert H. Richardson Fellow, and is on the faculty of .

Carbides and nitrides with a layered structure, MAX phases and offer the ability to finely tune materials properties according to the article, "MAX Phases: Bridging the Gap Between Metals and Ceramics."

"MAX phases are elastically stiff, good thermal and , resistance to chemical attack, and have relatively low thermal expansion coefficients. Mechanically, they are relatively soft, and most are readily machinable," according to the article by Radovic and Drexel University's Michel W. Barsoum.

MAX phase materials can be fabricated as bulk materials, powders, porous foams, and , and offer high temperature stability, thermal and shock resistance, crack-healing capabilities, , good machinability, and exceptional oxidation resistance, they lend themselves to high-temperature applications, such as heating elements, gas burner nozzles, and industrial die inserts, high-temperature foil bearings, glove and condom molds, and dry drilling of concrete.

Explore further: Magnetic actuation enables nanoscale thermal analysis

Related Stories

Magnetic actuation enables nanoscale thermal analysis

January 12, 2012

Polymer nano-films and nano-composites are used in a wide variety of applications from food packaging to sports equipment to automotive and aerospace applications. Thermal analysis is routinely used to analyze materials for ...

Lab team develops capability for atomistic simulations

January 27, 2012

(PhysOrg.com) -- Conventional scientific wisdom says that the interatomic forces between ions that control high-temperature processes such as melting are insensitive to the heating of the electron "glue" that binds the ions ...

Materials that shrink when heated

February 9, 2012

One common reason that people with fillings experience toothache is that their fillings expand at a different rate to the original tooth when, for example, drinking a hot drink. Contrary to intuition, however, not all materials ...

Bandgap engineering for high-efficiency solar cell design

June 22, 2012

ZnSnP2, an absorber material for solar cells, transitions from an ordered to a disordered structure at high temperatures. Researchers from University College London and the University of Bath have proposed taking advantage ...

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

New method opens pathway to new drugs and dyes

September 2, 2015

Rice University scientists have developed a practical method to synthesize chemical building blocks widely used in drug discovery research and in the manufacture drugs and dyes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.