Researchers seeking to redefine difference between solids and liquids

Apr 08, 2013 by Bob Yirka report
A schematic experimental parameter space. Credit: Charles Radin, Notices of the American Mathematical Society.

(Phys.org) —Charles Radin a mathematical physicist with the University of Texas and one of his former student's David Aristoff, have built a 2D model material made of disks to represent atoms. In their article published in Notices of the American Mathematical Society, they suggest that their model shows that defining the difference between a solid and a liquid should be more a matter of measuring the way a material responds to shear, than looking at the way its atoms are arranged.

For most people, the difference between a solid and liquid is easy to discern—liquids move, they flow, they take the shape of whatever they are put in. Solids on the other hand, are rigid and don't slosh around. For however, things are not quite so simple, especially since 1984 when Dan Shechtman discovered what are now known as (for which he won the in 2011)—materials that appear rigid but upon closer inspection reveal a non-repeating pattern in the arrangement of their atoms. Thus, they're neither liquid nor solid according to the traditional definition (solids are supposed to be arranged in a ), which muddles the very definition of the . Because of that, physicists and mathematicians have been looking for a new way to clearly differentiate between a solid and a liquid.

Radin and Aristoff suggest that measuring shear in a material is the way to go. In physics, shear is witnessed as a body part being deformed and can be expressed mathematically as the sidewise displacement between two points in parallel planes divided by the distance between those planes. In building their model, they found that at low densities, materials show no response to shear, but as the atoms move closer to one another and eventually become densely packed together, they do show shear, and also tend to result in expansion of the material. It's where it crosses over, the two say, that the definition of solid versus liquid resides.

Another team, this one in France, has another idea—they say matter can be defined as solid or liquid by measuring its viscosity, or ability to flow. They note that glass actually flows, very slowly of course, and so does diamond, though they note researchers would have to measure it over the course of the age of universe to see it flow due to Earth's gravity.

In either case, redefining what constitutes the different states of matter is important because without clear terminology, material descriptions can lose their meaning.

Explore further: Heat distributions help researchers to understand curved space

More information: Research paper PDF: www.ams.org/notices/201303/rnoti-p310.pdf

via Simons Foundation

Related Stories

A new way of making glass

Nov 09, 2012

(Phys.org)—A new way to make glass has been discovered by a collaboration of researchers at the Universities of Düsseldorf and Bristol using a method that controls how the atoms within a substance are ...

Quasicrystal mystery unraveled with computer simulation

Mar 06, 2008

The method to the madness of quasicrystals has been a mystery to scientists. Quasicrystals are solids whose atoms aren't arranged in a repeating pattern, as they are in ordinary crystals. Yet they form intricate patterns ...

Cracking a controversial solid state mystery

Feb 06, 2009

(PhysOrg.com) -- Scientists can easily explain the structural order that makes steel and aluminium out of molten metal. And they have discovered the molecular changes that take place as water turns to ice. But, despite the ...

How to Rip a Fluid

Jun 01, 2007

In a simple experiment on a mixture of water, surfactant (soap), and an organic salt, two researchers working in the Pritchard Laboratories at Penn State have shown that a rigid object like a knife passes ...

Recommended for you

Has microfinance lost its moral compass?

3 hours ago

The industry that provides financial services for people on low-incomes and without access to traditional banking services is morally reprehensible according to new research from The University of Manchester.

One of world's earliest Christian charms found

4 hours ago

(Phys.org) —A 1,500 year-old papyrus fragment found in The University of Manchester's John Rylands Library has been identified as one the world's earliest surviving Christian charms.

Study claims cave art made by Neanderthals

20 hours ago

A series of lines scratched into rock in a cave near the southwestern tip of Europe could be proof that Neanderthals were more intelligent and creative than previously thought.

User comments : 0