ORNL microscopy uncovers 'dancing' silicon atoms in graphene

Apr 03, 2013
Oak Ridge National Laboratory researchers used electron microscopy to document the 'dancing' motions of silicon atoms, pictured in white, in a graphene sheet.

(Phys.org) —Jumping silicon atoms are the stars of an atomic scale ballet featured in a new Nature Communications study from the Department of Energy's Oak Ridge National Laboratory.

The ORNL research team documented the atoms' unique behavior by first trapping groups of , known as clusters, in a single-atom-thick sheet of carbon called graphene. The silicon clusters, composed of six atoms, were pinned in place by pores in the , allowing the team to directly image the material with a scanning .

The "dancing" movement of the silicon atoms, seen in a video below, was caused by the energy transferred to the material from the electron beam of the team's microscope.

This video is not supported by your browser at this time.

"It's not the first time people have seen clusters of silicon," said coauthor Juan Carlos Idrobo. "The problem is when you put an on them, you insert energy into the cluster and make the atoms move around. The difference with these results is that the change that we observed was reversible. We were able to see how the silicon cluster changes its structure back and forth by having one of its atoms 'dancing' between two different positions."

Other techniques to study clusters are indirect, says Jaekwang Lee, first author on the ORNL study. "With the conventional instrumentation used to study clusters, it is not yet possible to directly identify the three-dimensional atomic structure of the cluster," Lee said.

The ability to analyze the structure of small clusters is important for scientists because this insight can be used to precisely understand how different atomic configurations control a material's properties. Molecules could then be tailored for specific uses.

"Capturing atomic clusters inside patterned graphene nanopores could potentially lead to practical applications in areas such as electronic and , as well as catalysis," Lee said. "It would be a new approach to tuning electronic and optical properties in materials."

The ORNL team confirmed its experimental findings with theoretical calculations, which helped explain how much energy was required for the silicon atom to switch back and forth between different positions.

Explore further: Researchers use oxides to flip graphene conductivity

More information: The study, published as "Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore," is available online here: www.nature.com/ncomms/journal/… full/ncomms2671.html

Related Stories

ORNL microscopy explores nanowires' weakest link

Feb 13, 2012

Individual atoms can make or break electronic properties in one of the world's smallest known conductors—quantum nanowires. Microscopic analysis at the Department of Energy's Oak Ridge National Laboratory ...

Building quantum states with individual silicon atoms

Apr 03, 2013

(Phys.org) —By introducing individual silicon atom 'defects' using a scanning tunnelling microscope, scientists at the London Centre for Nanotechnology have coupled single atoms to form quantum states.

Recommended for you

Researchers use oxides to flip graphene conductivity

15 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

21 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.