Morphees: Shape-shifting mobile devices (w/ Video)

April 29, 2013
Morphees: Shape-shifting mobile devices (w/ Video)

Prototype mobile devices that can change shape on-demand will be unveiled today and could lay down the foundation for creating high shape resolution devices of the future.

The research paper, to be presented at one of the world's most important conferences on human-computer interfaces, will introduce the term 'shape resolution' and its ten features, to describe the resolution of an interactive device: in addition to display and touch resolution.

The research, led by Dr Anne Roudaut and Professor Sriram Subramanian, from the University of Bristol's Department of Computer Science, have used 'shape resolution' to compare the resolution of six the team have built using the latest technologies in shape changing material, such as and electro active .

One example of a device is the team's concept of Morphees, self-actuated flexible mobile devices that can change shape on-demand to better fit the many services they are likely to support.

The team believe Morphees will be the of mobile devices, where users can download applications that embed a dedicated form factor, for instance the "stress ball app" that collapses the device in on itself or the "game app" that makes it adopt a console-like shape.

This video is not supported by your browser at this time.

Dr Anne Roudaut, Research Assistant in the Department of Computer Science's Bristol Interaction and Graphics group, said: "The interesting thing about our work is that we are a step towards enabling our to change shape on-demand. Imagine downloading a on the app-store and that the would shape-shift into a console-like shape in order to help the device to be grasped properly. The device could also transform into a sphere to serve as a stress ball, or bend itself to hide the screen when a password is being typed so passers-by can't see private information."

By comparing the shape resolution of their prototypes, the researchers have created insights to help designers towards creating high shape resolution Morphees.

In the future the team hope to build higher shape resolution Morphees by investigating the flexibility of materials. They are also interested in exploring other kinds of deformations that the prototypes did not explore, such as porosity and stretchability.

Explore further: Precision control of movement in robots

More information: Paper: Morphees: Toward high "shape resolution" in self-actuated flexible mobile devices, Anne Roudaut, Abhijit Karnik, Sriram Subramanian, ACM CHI 2013, Saturday 27 April to Thursday 2 May 2013, Paris, France. (PDF)

Related Stories

Precision control of movement in robots

May 16, 2008

A research team from the Department of Electricity and Electronics at the University of the Basque Country’s Faculty of Science and Technology in Leioa, Spain, led by Victor Etxebarria, is investigating the characteristics ...

How shape-memory materials remember

April 26, 2010

X-ray studies and fundamental calculations are helping physicists gain molecular level insight into the workings of some magnetic shape-memory materials, which change shape under the influence magnetic fields.

Sharp Develops New LCD Controller for Mobile Devices

July 2, 2010

Sharp Corporation has developed and will introduce the new LR388G9 LCD controller for mobile devices that enables simultaneous display on two different screens at half-XGA (480 x 1024 pixels) resolution, an industry first.

New process promises to revolutionize manufacturing of products

September 1, 2010

A new "smart materials" process - Multiple Memory Material Technology - developed by University of Waterloo engineering researchers promises to revolutionize the manufacture of diverse products such as medical devices, microelectromechanical ...

Can metals remember their shape at nanoscale, too?

November 8, 2011

University of Constance physicists Daniel Mutter and Peter Nielaba have visualized changes in shape memory materials down to the nanometric scale in an article about to be published in the European Physical Journal B.

'Transformer' protein makes different sized transport pods

May 25, 2012

These spheres may look almost identical, but subtle differences between them revealed a molecular version of the robots from Transformers. Each sphere is a vesicle, a pod that cells use to transport materials between different ...

Recommended for you

Nevada researchers trying to turn roadside weed into biofuel

November 26, 2015

Three decades ago, a University of Nevada researcher who obtained one of the first U.S. Energy Department grants to study the potential to turn plants into biofuels became convinced that a roadside weed—curly top gumweed—was ...

Glider pilots aim for the stratosphere

November 20, 2015

Talk about serendipity. Einar Enevoldson was strolling past a scientist's office in 1991 when he noticed a freshly printed image tacked to the wall. He was thunderstruck; it showed faint particles in the sky that proved something ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.