Microgels' behaviour under scrutiny

Apr 30, 2013

Being a physicist offers many perks. For one, it allows an understanding of the substances ubiquitous in everyday industrial products such as emulsions, gels, granular pastes or foams. These are known for their intermediate behaviour between fluid and solid. Paint, for example, can be picked up on a paintbrush without flowing and spread under the stress of the brush stroke like a fluid. Baudouin Geraud and colleagues from the Light Matter Institute at the University of Lyon, France, have studied the flow of a microgel confined in microchannels. They have shown, in a study just published in the European Physical Journal E, that its behaviour under confinement differs from predictions based on standard theories. Indeed, its molecules are not only subjected to local forces, but also to neighbouring forces that affect its flow.

The authors chose to study the influence of confinement on the flow of a microgel named Carbopol. It is made of jammed polymer blobs, typically a few microns in size, dispersed in water. For the first time, they explored whether this network of polymers can have an impact on the flow of this microgel when confined under a large range of pressure differentials and fluid movement speeds.

They relied on techniques including an approach constraining the complex fluid in sub-millimeter scale microchannels, known as microfluidic. They also used a high-resolution particles' speed called Tracking Particle Velocimetry and studied the flow response to an external force.

Geraud and colleagues confirmed, for the first time in a microgel, that the at a local point do not depend only on the local force but also on the dynamics of its vicinity. This has previously been shown in concentrated emulsions, granular materials and foams under confinement.

Explore further: Synthesis of a new lean rare earth permanent magnetic compound superior to Nd2Fe14B

More information: Geraud, B., Bocquet, L. and Barentin, C. (2013), Confined flows of a polymer microgel, European Physical Journal E 36: 30. DOI 10.1140/epje/i2013-13030-3

add to favorites email to friend print save as pdf

Related Stories

Smashing fluids... the physics of flow

Nov 29, 2010

(PhysOrg.com) -- Hit it hard and it will fracture like a solid... but tilt it slowly and it will flow like a fluid. This is the intriguing property of a type of ‘complex fluid’ which has revealed ...

Recommended for you

Three-dimensional metamaterials with a natural bent

3 hours ago

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Wild molecular interactions in a new hydrogen mixture

Oct 20, 2014

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

User comments : 0