Electronic zippers control DNA strands

Apr 18, 2013

A research team from NPL and the University of Edinburgh have invented a new way to zip and unzip DNA strands using electrochemistry.

The has been one of the most recognisable structures in science ever since it was first described by Watson and Crick almost 60 years ago (paper published in Nature in 25 April 1953). The binding and unbinding mechanism of DNA strands is vital to natural biological processes and to the polymerase chain reactions used in biotechnology to copy DNA for sequencing and cloning.

The improved understanding of this process, and the discovery of new ways to control it, would accelerate the development of new technologies such as and that could make medical diagnostics cheaper, faster and simpler to use.

The most common way of controlling the binding of DNA is by raising and lowering temperature in a process known as heat cycling. While this method is effective, it requires bulky equipment, which is often only suitable for use in laboratories. Medicine is moving towards personalised treatment and diagnostics which require portable devices to quickly carry out testing at the point of care, i.e. in hospitals rather than laboratories. The development of alternative methods to control the DNA binding process, for example with changes in acidity or the use of chemical agents, would be a significant step towards lab-on-a- that can rapidly detect disease.

However, until now, no method has been shown to enable fast, electrochemical control at constant temperatures without the need for dramatic changes in solution conditions or modifying the , the of DNA.

A research team from NPL and the University of Edinburgh have invented a new way of controlling DNA using electrochemistry. The team used a class of molecules called DNA intercalators which bind differently to DNA, depending on whether they are in a reduced or oxidised state, altering its stability. These molecules are also electroactive, meaning that their chemical state can be controlled with an electric current.

A paper published in the Journal of the American Chemical Society explains how the process works. Electrodes apply a voltage across a sample containing double strands of DNA which are bonded to the electroactive chemicals. This reduces the chemicals (they gain electrons), decreasing the stability of the DNA and unzipping the double helix into single strands. Removing the voltage leads to the oxidisation of the chemicals and the DNA strands zip back up to re-form the familiar double helix structure. Put simply, with the flick of a switch, the oxidation state of the molecules can be changed and the are zipped together or pulled apart.

Explore further: Chemical biologists find new halogenation enzyme

Related Stories

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, ...

Research sheds new light on kinky DNA

Jun 26, 2012

(Phys.org) -- A breakthrough in DNA research from the University of Reading could be used to devise new therapeutic treatments for cancer.

Novel DNA architecture for nanotechnology

Oct 04, 2012

The DNA structure as revealed by Watson and Crick is pivotal to the stability and replication of the DNA double helix. Replacement of the DNA base-pairs with other molecular entities is providing new functions ...

Stretching DNA to the Limit: DNA damage in a new light

Apr 20, 2007

It has long been known that UV light can damage DNA, reducing its ability to replicate and interact with proteins, and often resulting in the development of skin cancers. However, not much is known about how the elasticity ...

Recommended for you

Chemical biologists find new halogenation enzyme

12 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

18 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

18 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

20 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

flashgordon
not rated yet Apr 19, 2013
If anything, this could add mechanical controls to dna-nanomanuacturing.