Clever use of high-resolution mass spectrometry allows rapid cataloging of sulfur-containing compounds in plant extracts

April 26, 2013
Rapid cataloging of sulfur-containing compounds in extracts from plants such as onions has been demonstrated using a FT-ICR mass spectrometer (pictured). Credit: 2013 American Chemical Society; 2013 iStockphoto/Thinkstock (foreground)

Plants are a rich resource of bioactive compounds, many of which have inspired therapeutic drugs. Yet countless plant compounds, potentially with medical uses, still remain to be identified. Kazuki Saito, Ryo Nakabayashi and colleagues from the RIKEN Plant Science Center have now developed a technique for rapidly cataloging subsets of compounds in plant extracts based on mass spectrometry data as a first step toward a fully automated system for cataloging novel plant compounds.

Mass spectrometry is an analytical technique that captures the mass spectrum of molecules in a sample, making it a powerful tool for identifying unknown compounds. Those compounds that contain certain 'heteroatoms' such as oxygen, nitrogen and sulfur produce a spectral 'fingerprint' that can be resolved in high-resolution mass spectra. Saito and his team hypothesized that this characteristic could be exploited to quickly catalog compounds in .

To test their approach, the researchers profiled sulfur-containing compounds in onion extracts. Sulfur-containing compounds produce a pair of adjacent peaks in the mass spectrum—one 20 times stronger than the other—associated with the ratio of the two most common naturally occurring isotopes of the .

Using an ultrahigh-resolution, highly mass-accurate instrument called a Fourier transform (FT-ICR) , Saito and his colleagues were able to identify 67 sulfur-containing ions in the onion extract. Then, using isotope chemistry, they were able to establish the number of in each structure.

The researchers analyzed extracts from two sets of onions: one grown under a normal atmosphere, and another grown under an atmosphere in which the carbon in CO2 was replaced with the heavier carbon isotope, carbon-13. By measuring how much heavier a plant compound was when formed from carbon-13, the researchers could calculate its carbon count and so determine its complete atomic make-up. In a final step, the team established the full chemical structure of some of the sulfur-containing compounds by comparing their data with that of known compounds.

"We are now planning to develop an automated structural assignment system," says Nakabayashi. The researchers hope to automate this time-consuming process by incorporating an additional analysis technique called nuclear magnetic resonance (NMR), developing a database of high-quality mass spectrometry and NMR reference data, and establishing a computational algorithm for checking each compound against this database to establish its chemical structure. The researchers also plan to extend their existing technique to compounds containing other heteroatoms, such as oxygen, nitrogen, bromine and chlorine.

Explore further: Researchers provide new information about mass spectrometry

More information: Nakabayashi, R., et al. Combination of liquid chromatography−Fourier transform ion cyclotron resonance-mass spectrometry with 13C‑labeling for chemical assignment of sulfur-containing metabolites in onion bulbs. Analytical Chemistry 85, 1310–1315 (2013).

Related Stories

Researchers provide new information about mass spectrometry

October 15, 2007

Fresh data on mass spectrometry are presented in the report ‘Low-energy collision-induced fragmentation of negative ions derived from ortho-, meta-, and para-hydroxyphenyl carbaldehydes, ketones, and related compounds,’ ...

Identifying Molecules from the Deep Sea (w/ Video)

August 2, 2010

In a pioneering research project, for the first time, scientists at IBM and the University of Aberdeen have collaborated to "see" the structure of a marine compound from the deepest place on the Earth using an atomic force ...

Spot the chemical difference

June 27, 2012

( -- Scientists at Kew have devised a method to distinguish similar flavonoids when chemically profiling plant extracts.

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.