Related topics: mass spectrometry · protein

Recipe for planets

It's not every day that clues about the origin of our solar system fall from the sky, but one Victoria University of Wellington researcher has found just that—in a meteorite that collided with Earth 50 years ago.

Fragmenting ions and radiation sensitizers

A new study using mass spectrometry is helping piece together what happens when DNA that has been sensitized by the oncology drug 5-fluorouracil is subjected to the ionising radiation used in radiotherapy.

Performing chemistry in floating droplets

Could chemists be ready to ditch the venerable test tube, the very symbol of chemistry in the minds of many people? Maybe not quite yet, but Caltech's Jack Beauchamp is working on it.

Determining traits from genes

Advanced technologies allow scientists to decipher information about genes faster and more accurately than ever before. But bridging the gap between the genome and how it will be expressed has proven challenging. Scientists ...

Pottery related to unknown culture found in Ecuador

Archaeologists from the Far Eastern Federal University (FEFU), Institute of Archeology and Ethnography SB RAS (Russia); Escuela Superior Politécnica del Litoral (ESPOL, Ecuador); and Tohoku University (Japan) found shards ...

Researchers detect bromine atoms in springtime Arctic

For the first time, researchers at the University of Michigan have detected bromine atoms in the atmosphere, and in doing so, have confirmed the reaction pathway through which mercury is removed from the atmosphere and enters ...

page 1 from 15

Mass spectrometry

Mass spectrometry (MS) is an analytical technique for the determination of the elemental composition of a sample or molecule. It is also used for elucidating the chemical structures of molecules, such as peptides and other chemical compounds. The MS principle consists of ionizing chemical compounds to generate charged molecules or molecule fragments and measurement of their mass-to-charge ratios. In a typical MS procedure:

MS instruments consist of three modules: an ion source, which can convert gas phase sample molecules into ions (or, in the case of electrospray ionization, move ions that exist in solution into the gas phase); a mass analyzer, which sorts the ions by their masses by applying electromagnetic fields; and a detector, which measures the value of an indicator quantity and thus provides data for calculating the abundances of each ion present. The technique has both qualitative and quantitative uses. These include identifying unknown compounds, determining the isotopic composition of elements in a molecule, and determining the structure of a compound by observing its fragmentation. Other uses include quantifying the amount of a compound in a sample or studying the fundamentals of gas phase ion chemistry (the chemistry of ions and neutrals in a vacuum). MS is now in very common use in analytical laboratories that study physical, chemical, or biological properties of a great variety of compounds.

This text uses material from Wikipedia, licensed under CC BY-SA