Researchers at CERN take most precise measure of magnetic moment of antiproton

Apr 09, 2013 by Bob Yirka report
(a) The CPT symmetry can be likened to a mirror that reflects spatial coordinates, flips charge and other additive quantum numbers, and reverses time. To test for cracks in this CPT mirror, physicists check whether the magnetic moment of the proton (left) has the same magnitude as that of the antiproton (right). (Technically, the moments have opposite signs due to the way magnetic moment is defined relative to the spin.) (b) To measure the antiproton’s magnetic moment, the ATRAP Collaboration measures the cyclotron and spin-flip frequencies, fc and fs, respectively. The ratio of these frequencies gives the antiproton’s magnetic moment in terms of the nuclear magneton μN. Credit: APS/Alan Stonebraker

( —A research team made up of physicists from the US, Canada and Germany has succeeded in making the first individual-particle measurement of the magnetic moment of an antiproton. In their paper published in Physical Review Letters, they describe how they managed to capture a single antiproton and measured its magnetic moment in a way that is more precise (by a factor of 680) than any previous measurement efforts to date.

The of an antiproton relates in a broad sense to its angular momentum—theory suggests it should be equal to the magnetic moment of its counterpart, the . Testing such theories requires conducting experiments to discern if such symmetry does truly exist. As part of a wide range of experiments meant to compare matter with its antimatter counterparts, researchers look to what is known as "Charge Parity Time" symmetry—the more scientists learn about it, the more they expect to learn about the nature of the universe and to help answer questions such as why there appears to be far more matter than antimatter.

One aspect of such symmetry testing is measuring the magnetic moment of particles such as protons and and then comparing them to one another to see if they match. To do that in this latest effort, the research team took equipment that had been developed to measure the magnetic moment of a proton to —it's one of the few places antiprotons can be had. But that was only the beginning, the team had to first slow the antiproton down as it was delivered at near . To do that they shuttled it into a Penning trap—a device that uses magnets to cause particles to orbit around a central hub until they slow down enough to study. They also had to filter out all the other particles that came with the delivery. Overall, the researchers describe the process as very difficult. But in the end, they found success—they took the most of the magnetic moment to date of an antiproton and in so doing found that it was close enough to measurements taken of the magnetic moment of protons to proclaim the two to be "exactly opposite"—they have equal strength but opposite spins.

The results obtained by this study add credence to the Standard Model and leads scientists ever closer to gaining a true understanding of how the universe really works at the subatomic level.

Explore further: X-rays probe LHC for cause of short circuit

More information: One-Particle Measurement of the Antiproton Magnetic Moment, Phys. Rev. Lett. 110, 130801 (2013) DOI:10.1103/PhysRevLett.110.130801 (Free PDF)

For the first time a single trapped antiproton (p̅ ) is used to measure the p̅ magnetic moment μp̅ . The moment μp̅ =μp̅ S/(ℏ/2) is given in terms of its spin S and the nuclear magneton (μN) by μp̅ /μN=-2.792 845±0.000 012. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using the same method and trap electrodes gives μp̅ /μp=-1.000 000±0.000 005 to 5 ppm, for a proton moment μp=μpS/(ℏ/2), consistent with the prediction of the CPT theorem.

Physics Viewpoint

add to favorites email to friend print save as pdf

Related Stories

When matter and antimatter collide

Dec 24, 2010

Antimatter, a substance that often features in science fiction, is routinely created at the CERN particle physics laboratory in Geneva, Switzerland, to provide us with a better understanding of atoms and molecules. ...

Electron magnetic moment calculated precisely

Sep 11, 2012

(—An electron, as well as other subatomic particles with an electric charge, is actually a little magnet—it spins like a top, giving it its own magnetic moment.

Recommended for you

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.