Changing cellulose-forming process may tap plants' biofuel potential

Apr 26, 2013

(Phys.org) —Changing the way a plant forms cellulose may lead to more efficient, less expensive biofuel production, according to Penn State engineers.

"What every biofuel manufacturer wants to do is to get to the sugars," said Jeffrey Catchmark, associate professor of agricultural and biological engineering. "But the structure of cellulose itself can be an obstacle."

Catchmark said that most of a plant's sugar-based energy is locked up in the of cellulose. To make cellulose, plants create long chains of sugar—glucose—that are then crystallized and densely packed into tight, ordered bundles resistant to water and other solvents. This bundling may help build strong , but biofuel makers must use extra effort to break down and separate the bundles and the crystalline cellulose to extract the sugars used to fuels.

Using bacteria that produce cellulose as a model to test the process, the researchers discovered an approach for modifying cellulose synthesis in living plants for improved biofuel-making efficiency. During the synthesis process the researchers added glucomannan, a found in plants that sticks to cellulose, and found that it altered the structure and assembly of the cellulose, allowing it to be broken down more efficiently.

Another method to ensure the glucomannan is added during cellulose formation requires genetically engineering the plant to express or over-express the enzymes that form the glucomannan, according to the researchers, who applied for a provisional patent on the process.

"In our work, what we are interested in is whether we can improve digestibility by altering the or by altering the bundle formation," said Catchmark, who worked with Lin Fang, graduate student in agricultural and .

By growing plants with cellulose that is less crystalized and that has fewer structured bundles, biofuel manufacturers will not need to spend as much time and effort breaking down these pre-treated plants, according to the researchers. Currently, biofuel manufacturers must use several industrial processes that are time- and energy-intensive and relatively expensive, including chemical, mechanical and fermentation, to break down the cellulose and separate other materials.

Catchmark said that biofuel manufacturers may be able to further optimize production processes to suit the modified plants for even greater efficiency.

"This will give biofuel makers more options," Catchmark said. "Hopefully, you will need less effort and lower costs with the pre-treatment, but with improved conversion efficiency."

Catchmark said that while the technique was used on bacteria, it could be adapted to various plant species because both plants and certain bacteria share similarities in how they create cellulose. He said that researchers could use the process in both grass and wood plant species, giving biofuel makers additional options. The researchers now plan to test the methods on plants.

Explore further: Improving the productivity of tropical potato cultivation

Related Stories

Process can cut the cost of making cellulosic biofuels

Jan 22, 2009

A patented Michigan State University process to pretreat corn-crop waste before conversion into ethanol means extra nutrients don't have to be added, cutting the cost of making biofuels from cellulose.

Cellulose breakdown

Jun 24, 2011

Ionic liquids have emerged as promising new solvents capable of disrupting the cellulose crystalline structure in a wide range of biomass feedstocks.

Recommended for you

Building better soybeans for a hot, dry, hungry world

11 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

11 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.