Related topics: protein

Some assembly required: How a cellular machine builds itself

As you read this text, the millions of cells that make up your body are hard at work. Within every cell is a flurry of activity keeping you alive, mostly driven by machinery that is made up of proteins. Some of this protein ...

Psychological understanding of the term 'artificial'

Is natural always good and artificial always bad? We talked to psychologist Angela Bearth and biotechnologist Sven Panke about science, skepticism, misunderstandings and how language influences the way we think.

Cleaner water through corn

Corn is America's top agricultural crop, and also one of its most wasteful. About half the harvest—stalks, leaves, husks, and cobs—remains as waste after the kernels have been stripped from the cobs. These leftovers, ...

page 1 from 39

Biological Engineering

Biological Engineering or bioengineering (including biological systems engineering) is the application of engineering principles to address challenges in the fields of biology and medicine. Biological engineering applies principles to the full spectrum of living systems, including molecular biology, biochemistry, microbiology, pharmacology, protein chemistry, cytology, immunology, neurobiology and neuroscience. As a study, it encompasses biomedical engineering and it is related to biotechnology. It deals with disciplines of product design, sustainability and analysis to improve and focus utilization of biological systems.

The word bioengineering was coined by British scientist and broadcaster Heinz Wolff in 1954. The term bioengineering is also used to describe the use of vegetation in civil engineering construction. The term bioengineering may also be applied to environmental modifications such as surface soil protection, slope stabilisation, watercourse and shoreline protection, windbreaks, vegetation barriers including noise barriers and visual screens, and the ecological enhancement of an area.

Biological Engineering employs knowledge and expertise from a number of pure and applied sciences, such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, and other important medical needs that improve the living standards of societies.

Biological Engineers or bioengineers are engineers who use the principles of biology and the tools of engineering to create usable, tangible products. In general, biological engineers attempt to either mimic biological systems in order to create products or modify and control biological systems so that they can replace, augment, or sustain chemical and mechanical processes. Bioengineers can apply their expertise to other applications of engineering and biotechnology, including genetic modification of plants and microorganisms, bioprocess engineering, and biocatalysis.

Because other engineering disciplines also address living organisms (e.g., prosthetics in mechanical engineering), the term biological engineering can be applied more broadly to include agricultural engineering and biotechnology. In fact, many old agricultural engineering departments in universities over the world has rebranded themselves as agricultural and biological engineering or agricultural and biosystems engineering. Biological engineering is also called bioengineering by some colleges and Biomedical engineering is called Bioengineering by others, and is a rapidly developing field with fluid categorization. The Main Fields of Bioengineering may be categorised as:

This text uses material from Wikipedia, licensed under CC BY-SA