New solar-cell design based on dots and wires

Mar 25, 2013 by David L. Chandler
New solar-cell design based on dots and wires
Scanning Electron Microscope images show an array of zinc-oxide nanowires (top) and a cross-section of a photovoltaic cell made from the nano wires, interspersed with quantum dots made of lead sulfide (dark areas). A layer of gold at the top (light band) and a layer of indium-tin-oxide at the bottom (lighter area) form the two electrodes of the solar cell. Credit: Jean, et al. Advanced Materials

Using exotic particles called quantum dots as the basis for a photovoltaic cell is not a new idea, but attempts to make such devices have not yet achieved sufficiently high efficiency in converting sunlight to power. A new wrinkle added by a team of researchers at MIT—embedding the quantum dots within a forest of nanowires—promises to provide a significant boost.

Photovoltaics (PVs) based on tiny colloidal quantum dots have several potential advantages over other approaches to making : They can be manufactured in a room-temperature process, and avoiding complications associated with high-temperature processing of silicon and other PV materials. They can be made from abundant, inexpensive materials that do not require extensive purification, as silicon does. And they can be applied to a variety of inexpensive and even materials, such as lightweight plastics.

But there's a tradeoff in designing such devices, because of two contradictory needs for an effective PV: A solar cell's absorbing layer needs to be thin to allow charges to pass readily from the sites where solar energy is absorbed to the wires that carry current away—but it also needs to be thick enough to absorb light efficiently. Improved performance in one of these areas tends to worsen the other, says Joel Jean, a doctoral student in MIT's Department of Electrical Engineering and Computer Science (EECS).

"You want a thick film to absorb the light, and you want it thin to get the charges out," he says. "So there's a huge discrepancy."

That's where the addition of can play a useful role, says Jean, who is the lead author of a paper to be published in the journal Advanced Materials. The paper is co-authored by chemistry professor Moungi Bawendi, materials science and engineering professor Silvija Gradečak, EECS professor Vladimir Bulović, and three other graduate students and a postdoc.

These nanowires are conductive enough to extract charges easily, but long enough to provide the depth needed for light absorption, Jean says. Using a bottom-up growth process to grow these nanowires and infiltrating them with lead-sulfide quantum dots produces a 50 percent boost in the current generated by the solar cell, and a 35 percent increase in overall efficiency, Jean says. The process produces a vertical array of these nanowires, which are transparent to visible light, interspersed with quantum dots.

"If you shine light along the length of the nanowires, you get the advantage of depth," he says. But also, "you decouple light absorption and charge carrier extraction, since the electrons can hop sideways onto a nearby nanowire and be collected."

One advantage of quantum dot-based PVs is that they can be tuned to absorb over a much wider range of wavelengths than conventional devices, Jean says. This is an early demonstration of a principle that, through further optimization and improved physical understanding, might lead to practical, inexpensive new kinds of photovoltaic devices, he says.

Already, the test devices have produced efficiencies of almost 5 percent, among the highest ever reported for a quantum-dot PV based on zinc oxide, he says. With further development, Jean says, it may be possible to improve the devices' overall efficiency beyond 10 percent, which is widely accepted as the minimum efficiency for a commercially viable solar cell. Further research will, among other things, explore using longer nanowires to make thicker films, and also work on better controlling the spacing of the nanowires to improve the infiltration of between them.

Explore further: Pinpoint laser heating creates a maelstrom of magnetic nanotextures

More information: "ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells" onlinelibrary.wiley.com/doi/10… a.201204192/abstract

Related Stories

Hot Electrons Could Double Solar Cell Power Efficiency

Dec 18, 2009

Scientists have experimentally verified a theory suggesting that hot electrons could double the output of solar cells. The researchers, from Boston College, have built solar cells that successfully use hot ...

Researchers demonstrate quantum dots that assemble themselves

Feb 11, 2013

(Phys.org)—Scientists from the U.S. Department of Energy's National Renewable Energy Laboratory and other labs have demonstrated a process whereby quantum dots can self-assemble at optimal locations in nanowires, a breakthrough ...

Recommended for you

Chemically driven micro- and nanomotors

Dec 17, 2014

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" ...

Pyramid nanoscale antennas beam light up and down

Dec 17, 2014

Researchers from FOM Institute AMOLF and Philips Research have designed and fabricated a new type of nanoscale antenna. The new antennas look like pyramids, rather than the more commonly used straight pillars. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (1) Mar 25, 2013
"You want a thick film to absorb the light, and you want it thin to get the charges out," he says. "So there's a huge discrepancy."

What you'd then optimaly want is layers that look like a Peano curve (or a Koch curve...or any other type of fractal that fills the volume with a thin, folded layer.) Maybe even just a vertical racetrack configuration.
Any of which would be quite a challenge to manufacture quickly/cheaply.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.