New taxonomy of platinum nanoclusters

Feb 20, 2013

The unexpected diversity of metallic nanoclusters' inner structure has now been catalogued into families. Physicists have gained new insights into the inner intricacies of the structural variations of metallic nanoclusters. This work by Luca Pavan, Cono Di Paola and Francesca Baletto from King's College London, UK, is about to be published in European Physical Journal D. It takes us one step closer to tailoring on-demand characteristics of metallic nanoparticles. Indeed, the geometric structure of these nanoclusters influences their chemical and physical properties, which differ from those of individual molecules and of bulk metals.

The problem resides in the difficulty in evaluating the optimal structure for such clusters in order to make them display specific properties and satisfy a particular technological need. This is because a system consisting of several interlinked atoms is far too complex for its optimal structure to be identified simply by resolving equations.

Instead, the authors applied a method, known as metadyamics, typically used to sample the energy landscape of biomolecules and proteins. This technique, quite new in the field of metallic , identifies structures corresponding to each minimum of the . In addition, this approach gains a better insight into the interconnection of various structural motifs at given temperatures.

Specifically, this study describes an iterative approach for metadynamics in order to detect which are the key structures of 13-atom-strong platinum nanoclusters. The authors focused on identifying the most recurrent motifs that can play an important role during structural transformations of the nanoclusters.

In addition, the team proposed a complete way of cataloguing such structural motifs in families. The next step would be to understand how different geometrical shapes are connected and evaluate the energy cost for each transformation, from one type of geometry to another. Applications could, for example, be found in nanocatalysis and nanodevices for magnetic storage.

Explore further: For electronics beyond silicon, a new contender emerges

More information: Pavan L., Di Paola C. and Baletto F. (2013), Sampling the Energy Landscape of Pt13 with Metadynamics, European Physical Journal D, DOI 0.1140/epjd/e2012-30560-y

add to favorites email to friend print save as pdf

Related Stories

Researchers find ordered atoms in glass materials

Oct 02, 2012

(Phys.org)—Scientists at Ames Laboratory have discovered the underlying order in metallic glasses, which may hold the key to the ability to create new high-tech alloys with specific properties.

Controlling the size of nanoclusters

Aug 19, 2008

Melissa Patterson, a W. Burghardt Turner Fellow at Stony Brook University (SBU), will give a talk at the American Chemical Society's national meeting in Philadelphia on controlling the size of nanoclusters, research she performed ...

A new use for atomically engineered gold

Aug 29, 2012

A University of Central Florida assistant professor has developed a new material using nanotechnology, which could help keep pilots and sensitive equipment safe from destructive lasers.

Recommended for you

For electronics beyond silicon, a new contender emerges

13 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

14 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

15 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0