'Psychic cells': Scientists discover cells can communicate through physical barriers

February 1, 2013 by Kim Irwin

(Phys.org)—Scientists at UCLA and Charles R. Drew University of Medicine and Science have discovered a possible method by which cancer cells and dying cells communicate with nearby normal nerve cells without being physically connected to them.

Dr. Keith Norris, senior author of the research and assistant dean for clinical and translational science at the David Geffen School of Medicine at UCLA, said the study contributes to the understanding of , which until now was known to take place only through direct contact or direct stimulation of receptors in the cells of molecules known as or in hormones, signaling factors, nerves and other pathways.

It now appears, the researchers say, that cells may be able to effectively communicate through physical barriers. Their study appears in the January 2013 issue of the peer-reviewed American Journal of Translational Research.

For the study, Norris and his colleagues reported on how normal isolated in an enclosed chamber behave during a function known calcium signal processing. The team found that when these isolated nerve cells were surrounded by other normal nerve cells outside the barrier, they had the same calcium signaling properties.

However, when the normal isolated nerve cells were surrounded by cancer cells or dying cells, they processed the calcium signals differently, suggesting there was communication from the surrounding cells. The between the cells prevented hormonal, ligand-receptor and other traditional forms of cell-to-cell communication.

Co-authors Dr. Christopher Reid and Victor Chaban of the Life Sciences Institute at Drew University noted that this novel finding may represent a potentially higher form of cell communication. Discovering that and may have a previously undiscovered communication method with other cells may lead to new treatments for cancer, aging and other diseases, they said. Further studies are needed to uncover how the non-physical communication occurs.

"Understanding the many ways in which cells communicate is an important step toward developing new approaches to treat disease," said Dr. Steven M. Dubinett, executive director of the UCLA Clinical and Translational Science Institute (UCLA CTSI).

Explore further: Combo method reveals cells' signal systems

Related Stories

Combo method reveals cells' signal systems

May 25, 2011

Our understanding of what differentiates cancer cells from normal cells is limited by a lack of methods for studying the complex signal systems of individual cells. By combing two different methods, a team of Uppsala researchers ...

Milestone in the regeneration of brain cells

August 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded ...

Research identifies how cancer cells cheat death

June 8, 2011

Research led by David Litchfield of The University of Western Ontario has identified how biochemical pathways can be "rewired" in cancer cells to allow these cells to ignore signals that should normally trigger their death. ...

Study: Stem cells report olfactory nerves

April 30, 2007

U.S. researchers identified a "backup supply" of stem cells that can repair the most severely damaged nerves responsible for human olfactory sense.

Recommended for you

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(Phys.org)—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...

Ten months in the air without landing

October 27, 2016

Common swifts are known for their impressive aerial abilities, capturing food and nest material while in flight. Now, by attaching data loggers to the birds, researchers reporting in the Cell Press journal Current Biology ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.