'Psychic cells': Scientists discover cells can communicate through physical barriers

Feb 01, 2013 by Kim Irwin

(Phys.org)—Scientists at UCLA and Charles R. Drew University of Medicine and Science have discovered a possible method by which cancer cells and dying cells communicate with nearby normal nerve cells without being physically connected to them.

Dr. Keith Norris, senior author of the research and assistant dean for clinical and translational science at the David Geffen School of Medicine at UCLA, said the study contributes to the understanding of , which until now was known to take place only through direct contact or direct stimulation of receptors in the cells of molecules known as or in hormones, signaling factors, nerves and other pathways.

It now appears, the researchers say, that cells may be able to effectively communicate through physical barriers. Their study appears in the January 2013 issue of the peer-reviewed American Journal of Translational Research.

For the study, Norris and his colleagues reported on how normal isolated in an enclosed chamber behave during a function known calcium signal processing. The team found that when these isolated nerve cells were surrounded by other normal nerve cells outside the barrier, they had the same calcium signaling properties.

However, when the normal isolated nerve cells were surrounded by cancer cells or dying cells, they processed the calcium signals differently, suggesting there was communication from the surrounding cells. The between the cells prevented hormonal, ligand-receptor and other traditional forms of cell-to-cell communication.

Co-authors Dr. Christopher Reid and Victor Chaban of the Life Sciences Institute at Drew University noted that this novel finding may represent a potentially higher form of cell communication. Discovering that and may have a previously undiscovered communication method with other cells may lead to new treatments for cancer, aging and other diseases, they said. Further studies are needed to uncover how the non-physical communication occurs.

"Understanding the many ways in which cells communicate is an important step toward developing new approaches to treat disease," said Dr. Steven M. Dubinett, executive director of the UCLA Clinical and Translational Science Institute (UCLA CTSI).

Explore further: How plant cell compartments change with cell growth

add to favorites email to friend print save as pdf

Related Stories

Combo method reveals cells' signal systems

May 25, 2011

Our understanding of what differentiates cancer cells from normal cells is limited by a lack of methods for studying the complex signal systems of individual cells. By combing two different methods, a team of Uppsala researchers ...

Milestone in the regeneration of brain cells

Aug 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded ...

Research identifies how cancer cells cheat death

Jun 08, 2011

Research led by David Litchfield of The University of Western Ontario has identified how biochemical pathways can be "rewired" in cancer cells to allow these cells to ignore signals that should normally trigger their death. ...

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0