10-year study reveals incredible level of accuracy to estimate intrinsic magnetic properties of two subatomic particles

Jan 11, 2013
Calculations incorporating a complete set of Feynman diagrams give the most accurate estimates of the anomalous magnetic moment of the electron and the muon to date. Credit: 2012 American Physical Society

The electron is found in every atom and plays a key role in almost every chemical reaction. So, a complete understanding of its physical properties is vital. Researchers from the RIKEN Nishina Center for Accelerator-Based Science, together with their colleagues from Nagoya University, Japan, and Cornell University in the US, have completed the most precise calculations of the magnetic properties of the electron and a similar, heavier particle known as a muon. These results provide a stringent test of physicists' understanding of the subatomic world.

The most accurate theory for describing that scientists have yet created is called the 'standard model'. This model divides into three broad categories: quarks, which make up most of the mass around us; gauge bosons, which are responsible for forces that hold this matter together; and leptons, which include both the electron and the muon. Leptons are characterized by their mass, their electric charge and their magnetic moment—a measure of the particle's intrinsic magnetic properties.

British scientist predicted that the magnetic moment of leptons should be exactly two. However, scientists have known for a long time that the actual value varies very slightly from this perfect number because of . RIKEN researcher Makiko Nio and her colleagues have performed state-of-the-art of this anomalous magnetic moment of both the electron and the muon.

describe the behavior of elementary particles using pictorial representations known as Feynman diagrams. Nio and her co-workers included in their calculations all of the 12,672 Feynman diagrams relevant to the anomalous magnetic moment of the electron, far more than any previous work. "To handle these enormous and tedious calculations, we developed an automated code-generating system, and carried out computations using supercomputers at RIKEN for almost 10 years," says Nio. They were thus able to provide a value for the electron anomalous magnetic moment that was accurate to 0.24 parts per billion. "With these results we have also obtained the world-best value of the fine-structure constant, which determines the strength of electromagnetic interactions," she says.

The researchers also performed similar calculations to provide a more accurate estimation of the muon anomalous magnetic moment. Their improved value confirms the previous result which does not fully agree with that expected from the standard model. The researchers believe that this discrepancy between the measurement and theoretical prediction may lead to new physics beyond the standard model of elementary particles.

Explore further: Tiny particles have big potential in debate over nuclear proliferation

More information: Aoyama, T., Hayakawa, M., Kinoshita, T. & Nio, M. Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. Physical Review Letters 109, 111807 (2012). prl.aps.org/abstract/PRL/v109/i11/e111807

Aoyama, T., Hayakawa, M., Kinoshita, T. & Nio, M. Complete tenth-order QED contribution to the muon g-2. Physical Review Letters 109, 111808 (2012). prl.aps.org/abstract/PRL/v109/i11/e111808

Related Stories

Electron magnetic moment calculated precisely

Sep 11, 2012

(Phys.org)—An electron, as well as other subatomic particles with an electric charge, is actually a little magnet—it spins like a top, giving it its own magnetic moment.

12 matter particles suffice in nature

Dec 13, 2012

How many matter particles exist in nature? Particle physicists have been dealing with this question for a long time. The 12 matter particles contained in the standard model of particle physics? Or are there ...

Neutrinos change flavors while crossing Japan

Jun 15, 2011

By shooting a beam of neutrinos through a small slice of the Earth under Japan, physicists say they've caught the particles changing their stripes in new ways. These observations may one day help explain why the universe ...

Researchers seeking the fourth property of electrons

Jul 20, 2010

Do electrons have a fourth property in addition to mass, charge and spin, as popular physics theories such as supersymmetry predict? Researchers from Germany, the Czech Republic and the USA want to find the ...

Recommended for you

New method for non-invasive prostate cancer screening

7 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

8 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

9 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

13 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

A2G
5 / 5 (1) Jan 11, 2013
This has huge implications. The last paragraph says it all.