Nanoscale engineering could lead to faster, smaller, more stable electronic memories

January 2, 2013
Data storage: Good things come in small packages
Phase change in NGST is faster when the grains are smaller and arranged into tinier cells, owing to an increase in the ratio of surface (blue) to internal (red) grains and the interface between grains. © 2012 Nature Publishing Group

Developing a so-called 'universal memory', or the perfect electronic memory, has long been the holy grail of electronic engineering. A universal memory should have a fast read and write speed, high reliability, low power consumption, and be compatible with other electronic components as well as non-volatile; that is, it should retain the data even when the device's power is switched off.

Weijie Wang at the A*STAR Data Storage Institute, Singapore, and her co‐workers have now shown that nanometer-scale engineering of so-called phase-change materials could lead to just such a device. The atoms in phase-change materials, such as Ge2Sb2Te5 (GST), can arrange themselves into one of two configurations. These two 'phases' act as the ones and zeroes in digital information, and a pulse of electricity can change the material from one to the other. The ease with which GST changes phase, however, is both a blessing and a curse. On the plus side, it means that it can store data very quickly; but, on the down side, it is prone to switching phase unexpectedly and thus losing the data.

"We have learnt how to create fast and stable phase-change that is scalable to nanometer sizes by developing a better understanding of the mechanisms that determine the of these materials," says Wang.

Phase-change random-access memory (PCRAM) is one of the most promising approaches to universal memory. Previous research has shown that adding nitrogen to GST, creating NGST, makes a more stable material, but also slows the phase-change process.

Wang and her co-workers showed, however, that both high speed and high stability are possible simultaneously. They experimentally demonstrated that phase change in NGST became much faster by scaling down physically. "We developed a dual-scaling technique to reduce both the overall material volume and the size of the individual grains that make up NGST," she explains.

When the researchers deposited small-grain NGST into the pores of a thin film of silicon dioxide, they found that phase change in 20-nanometer-wide structures containing 5 nanometer grains was as much as 17 times faster than devices created in 200-nanometer pores. This increase in speed is because the mechanism that drives phase change is fundamentally different for smaller grains that are in smaller cells, owing to their higher surface-area-to-volume ratio.

"In principle, this method is applicable to all types of phase-change materials," says Wang. "So, appropriate choice of device structure and material opens new opportunities for optimizing memory device performance."

Explore further: UCLA receives grant for ongoing research on high-speed, high-density computer memory

More information: Wang, W., Loke, D., Shi, L., Zhao, R., Yang, H. et al. Enabling universal memory by overcoming the contradictory speed and stability nature of phase-change materials. Scientific Reports 2, 360 (2012).

Related Stories

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.