New insights into stable magnetism of phase-change semiconductors could enable development of ultra-high-speed data stor

July 18, 2012, Agency for Science, Technology and Research (A*STAR), Singapore
Credit: www.iStockphoto.com/prill

Phase-change semiconductors have the ability to switch back and forth between amorphous (non-crystalline solid) and crystalline phases upon heating. As such, they are used widely in data storage and computer memory applications, for the reason that information can be written in binary form using the two distinct states.

One particular phase-change alloy currently used in rewritable disc technology is that of , and tellunium, or Ge2Sb2Te5 (GST). Researchers believe that this material may prove useful for the field of spintronics, generating a way of storing data which takes advantage of the inherent , or spin, of present in the material.

Recent research indicates that the atoms in GST could naturally create a stable bond with certain metals, thereby generating a permanent and stable ferromagnetic state potentially useful for high-speed read/write storage. However, to date, researchers have been unsure exactly how GST is able to form a stable ferromagnetic state.

Now, Kewu Bai at the A*STAR Institute for High Performance Computing, together with co-workers from A*STAR’s Data Storage Institute and the Singapore University of Technology and Design, have completed an in-depth analysis of GST and its ability to maintain stable ferromagnetism when doped with iron.

“Alloying magnetic elements such as iron with semiconductors provides the materials necessary for future applications,” explains Bai. “We know very little about the processes behind ferromagnetism from doping phase-change materials with metals, because the commonly used experimental techniques, such as X-ray diffraction, transmission microscopy and X-ray absorption, are not sufficient to characterize material microstructures.”

The research team instead used first-principle calculations to determine the validity of the experiments they carried out. First-principle calculations use the inherent laws of nature — for example, bonding laws between atoms and laws for electron movements — to build up an exact picture of the chemical structures at work, rather than relying on best-fit parameters in computer models.

“We used first-principle calculations to locate the site in GST at which iron molecules preferred to bond,” explains Bai. “The mechanism that led to the observed ferromagnetism was then uncovered.”

The researchers discovered that the iron molecules preferred to bond with the antimony molecules in GST. Along certain orientations within the crystalline phase, the iron–antimony bonding becomes dominant, leading to a stable ferromagnetism in the material.

“We are still in close collaboration with the Institute team to explore multifunctional phase-change materials further,” explains Bai. “We hope to test our criteria for other transition metals that could also cause ferromagnetism in GST.”

Explore further: Thanks for the memory: More room for data in 'phase-change' material

More information: Ding, D. et al. Origin of ferromagnetism and the design principle in phase-change magnetic materials. Physical Review B 84, 214416 (2011).

Related Stories

Mediating magnetism

May 4, 2011

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Supercomputer unravels structures in DVD materials

January 9, 2011

Although the storage of films and music on a DVD is part of our digital world, the physical basis of the storage mechanism is not understood in detail. In the current issue of the leading journal Nature Materials, researchers ...

The origin of organic magnets

March 2, 2012

Electrical engineers are starting to consider materials made from organic molecules -- including those made from carbon atoms -- as an intriguing alternative to the silicon and metals used currently in electronic devices, ...

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Jul 18, 2012
Still 2D, BLAH !

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.