Echidna insight into evolution of embryo growth

Dec 07, 2012 by Echidna Insight Into Evolution Of Embryo Growth
Australia's unique native animals, such as this echidna, are shedding light on mammalian evolution. Credit: Vanessa Fitzgerald.

An international team including University of Adelaide scientists has discovered the molecular change in echidnas enabling both parents to influence the growth of the embryo during pregnancy in mammals.

The authors of this work, published this week in the prestigious journal Science, say this provides insight into the of embryo growth regulation in mammals.

Associate Professor Briony and Associate Professor Frank Grützner, both from the University of Adelaide's School of Molecular & Biomedical Science, are co-authors of this work, which has been led by researchers at the universities of Oxford and Bristol.

"This research is a great example of how Australia's unique native animals can shed light on mammalian evolution," Associate Professor Grützner says.

"Echidnas and platypuses are unique egg-laying mammals that evolved much earlier than humans, but interestingly they still feature a period of fetal maternal exchange during their short 2-3 week 'pregnancy'. The unique Australian monotremes can therefore be regarded as 'intermediates' between egg-laying birds and intrauterine mammalian development and have been crucial for this discovery."

The change from egg-laying to extended pregnancy sparked the evolution of what scientists describe as a "parental conflict" over the maternal resources provided to the fetus in mammals.

"On the molecular level, the growth factor IGF2 and its inhibitor, the IGF2 receptor, play a central role in this conflict between father and mother, which is thought to result in parent-of-origin dependent gene activity. This means that of the two igf2 gene copies, the one inherited from the father is active, thereby promoting growth and energy extraction from the mother, whereas the mother's copy is inactive, to limit growth of the embryo and save her energy for future offspring," Associate Professor Forbes says.

"For the growth-inhibiting IGF2 receptor, the switch settings are opposite: off from the paternal gene and on from the maternal gene.

"Until now it was unclear how IGF2 and its receptor became involved in this parental 'tug-of-war' found uniquely in mammals.

"This new paper in Science reports the detailed structure of the igf2 receptor in birds, monotremes, opposum and humans, and reveals how the structure of the igf2 receptor protein has changed in mammals in a way that has enabled IGF2 binding and inhibition of its action," she says.

"It is amazing that egg-laying monotremes provide us with such a fascinating new insight into the molecular basis of embryo growth regulation during .

"This is the first molecular evidence about how these two genes became the means of a parental conflict over embryo growth in . It is a major stepping stone in understanding why some genes are regulated differently between fathers and mothers."

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: stke.sciencemag.org/cgi/content/full/sci;338/6111/1209

Related Stories

Uni leads study on echidna sex life

Aug 22, 2007

A University of Adelaide-led project will study the genetic makeup of one of Australia's most iconic animals, the echidna, to give an unprecedented insight into their sex life and behaviour.

DNA tags key to brain changes in mental disorders

Feb 27, 2012

(Medical Xpress) -- Researchers from the Institute of Psychiatry at King’s College London have found a relationship between molecular tags on our DNA and the weight of a particular region of the human ...

Evolution of an imprinted domain in mammals

Jun 03, 2008

The normal human genome contains 46 chromosomes: 23 from the mother and 23 from the father. Thus, you have two copies of every gene (excluding some irregularity in the pair of sex chromosomes). In general, which parent contributes ...

Recommended for you

Can gene editing provide a solution to global hunger?

1 hour ago

According to the World Food Program, some 795 million people – one in nine people on earth – don't have enough food to lead a healthy active life. That will only get worse with the next global food cris ...

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.