Biopolymer: Designer interfaces between biological and artificial systems

December 13, 2012
Biomedical and life science applications of MPC polymers. Credit: Sci. Technol. Adv. Mater. Vol 13 (2012) p. 064101

In their recently published review article in the Science and Technology of Advanced Materials, Yasuhiko Iwasaki at Kansai University and Kazuhiko Ishihara at the University of Tokyo describe how developments in synthesis techniques have liberated the polymer MPC's potential for a huge range of medical and biological applications.

A polymer inspired by the lipids in cell membranes is proving an invaluable . Like the , the polymer 2-methacryloyloxyethyl phosphorylcholine (MPC) can provide a surface for biological reactions to take place, but it can also suppress unfavourable processes.

Microsphere columns after passage of whole blood for 15 min (left) and scanning electron microscopy images of polymer-coated beads packed in the columns (right). Credit: Sci. Technol. Adv. Mater. Vol 13 (2012) p. 064101

In their recently published review article, Yasuhiko Iwasaki at Kansai University and Kazuhiko Ishihara at the University of Tokyo in Japan describe how developments in synthesis techniques by showing that the 2-methacryloyloxyethyl phosphorylcholine (MPC) have liberated the polymer's potential for a huge range of medical and biological applications.

In fact the polymers were already attracting interest in the early 1970s. However until more facile were developed investigations were limited and the polymer was little understood. By 1999 MPC polymers were being produced on an industrial scale, allowing more substantial studies. MPC is easily polymerized in a range of architectures. The chemical can suppress reactions such as protein adsorption and and has a high and readily adjustable solubility in water. These versatile properties lend MPC polymers to a range of applications.

The authors also describe methods for generating the polymer for effective use in non-fouling coatings. Formed into poly(MPC) brush structures with specified chain architectures, they can also be used as surfaces for controlling . In addition, the researchers explain how surface modifications with MPC polymers are effective in improving blood compatibility. The polymers can suppress protein adsorption, platelet adhesion, and platelet activation at blood-contacting surfaces and they can also be solute permeable. As such they are well suited for coating cardiovascular applications such as stents, cardiopulmonary bypasses, and ventricular assist devices.

Based on the fact that "MPC and various kinds of MPC polymers are now available commercially worldwide, and many medical devices treated with MPC polymers are used in clinics," they underline how far research into applications of MPC has advanced, and indicate how many possibilities remain for exploiting the chemical further.

Explore further: Turning Sensation into Perception

More information: Iwasaki, Y. and Ishihara, K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces, Science and Technology of Advanced Materials, Vol. 13 (2012) p. 064101 (doi:10.1088/1468-6996/13/6/064101). URL: http://dx.doi.org/10.1088/1468-6996/13/6/064101

Related Stories

Turning Sensation into Perception

November 6, 2005

Perceiving a simple touch may depend as much on memory, attention, and expectation as on the stimulus itself, according to new research from Howard Hughes Medical Institute (HHMI) international research scholar Ranulfo Romo ...

CSIRO grants global license for new polymer technology

July 6, 2010

CSIRO has signed a global licensing agreement for its patented RAFT technology. Reversible Addition-Fragmentation chain Transfer (or RAFT) technology is an elegant and powerful polymerisation process that has given rise to ...

Researchers at UA developing next-gen conductive polymers

December 23, 2010

(PhysOrg.com) -- Conductive polymers, while not quite wonder materials, have the potential for being so and University of Akron polymer scientists and polymer engineers are focused on developing the next generation of the ...

Work sheds new light on medicinal benefits of plants

December 15, 2011

Scientists from institutions around the nation and the world have collaborated to develop new resources poised to unlock yet another door in the hidden garden of medicinally important compounds found in plants.

DNA type polymer for nanoelectronics

July 9, 2012

Scientists and engineers often turn to nature for inspiration and clues on how to do things more efficiently and effectively. European researchers successfully induced self-assembly of a novel electrically conductive polymer ...

Recommended for you

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

Making polymers from a greenhouse gas

July 28, 2015

A future where power plants feed their carbon dioxide directly into an adjacent production facility instead of spewing it up a chimney and into the atmosphere is definitely possible, because CO2 isn't just an undesirable ...

New material opens possibilities for super-long-acting pills

July 28, 2015

Medical devices designed to reside in the stomach have a variety of applications, including prolonged drug delivery, electronic monitoring, and weight-loss intervention. However, these devices, often created with nondegradable ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.