Researchers find undersea gas leaks off Israel's coast

Nov 12, 2012
Undersea gas leaks off Israel's coast are discovered by University of Haifa researchers

(Phys.org)—The terms "gas" and "sea" for many will invoke associations of reserves, business, and a lot of money. Whatever the association, most of the efforts in Israel's energy field are being directed at gas buried deep under the Mediterranean seabed. Now a new geophysical study, the first of its kind in Israel, has uncovered a system of active gas springs in the Haifa Bay seabed, at relatively shallow depths, only a few dozen meters below the surface.

The study, published in the journal Continental Shelf Research, describes the entire system, from its sources under the sea floor through the natural springs emerging from the seabed.

"This is a natural laboratory for researching from the sea floor – natural springs and less natural ones. We are only beginning to understand their contribution to climate and ," said Dr. Uri Schattner of the Leon H. Charney School of Marine Sciences at the University of Haifa, who led the research.

The first evidence of gas springs emerged from examining a map of the sea floor off Israel's northern coast. A joint effort between the University of Haifa and the Israel Oceanographic and Limnological Research Institute revealed no less than 700 spots in the seabed that looked like possible gas springs. The researchers' suspicions intensified when identified pockets of gas beneath the seabed.

Based on this evidence, researchers went out to sea four times to collect more data from the seabed and from under the sea floor. "Geophysical information enables us to research beneath the sea floor and map out the entire system, from the gas sources to their penetration of the sea waters," said Dr. Schattner.

However, what they found exceeded all expectations. A gas deposit of 72 square kilometers was found on the continental shelf, at depths of between 37 meters to 112 meters. While many of the gases remain in the reserve, some still manage to escape into the sea.

"We don't know yet what kind of gas we're talking about, but its role in undermining the stability of the seabed is clear," said Dr. Michael Lazar, a member of the research team. "This means that any discussion of marine infrastructure development must seriously relate to this shallow gas stratum." Israel's Energy and Water Ministry is expending a great deal of effort on formulating National Master Plan 37H, which, among other things, deals with the transportation of gas produced from deep-sea drilling to pressure-reducing facilities. These will be located on the , in the sea, from where the gas will be transported to the coast.

"Now we are beginning to understand that there is no substitute for thoroughly researching the stability of the sea floor to prevent an infrastructure failure, since any leak could cause an ecological disaster," said Dr. Schattner.

During the coming months, the researchers will be making another expedition to the springs, this time with a team of biologists and geologists. This unique combination of experts from the Leon H. Charney School of will be able to provide a better understanding of the type of involved and its influence on marine life near the .

"Every research trip challenges and fascinates us anew," said Dr. Schattner. "This time we'll be going out with a few vessels, each of which is dedicated to different types of surveying and sampling."

Explore further: New, tighter timeline confirms ancient volcanism aligned with dinosaurs' extinction

add to favorites email to friend print save as pdf

Related Stories

Understanding methane's seabed escape

Sep 19, 2011

A shipboard expedition off Norway, to determine how methane escapes from beneath the Arctic seabed, has discovered widespread pockets of the gas and numerous channels that allow it to reach the seafloor.

Deep sea pipelines to green gas production

Oct 10, 2008

(PhysOrg.com) -- University of Queensland researchers are working to tap into a wealth of natural gas resources located in distant, deep-ocean fields off the coast of Western Australia.

Marine Geophysicists probe sea floor

Apr 13, 2007

A team from U of T’s marine geophysics group is participating in a joint project to create the world’s largest cable-linked sea floor observatory on the Pacific Ocean floor.

Recommended for you

Scientists make strides in tsunami warning since 2004

11 hours ago

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

12 hours ago

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.