Team develops lignin-based thermoplastic conversion process

Nov 30, 2012

(Phys.org)—Turning lignin, a plant's structural "glue" and a byproduct of the paper and pulp industry, into something considerably more valuable is driving a research effort headed by Amit Naskar of Oak Ridge National Laboratory.

In a cover article published in , the research team describes a process that ultimately transforms the lignin byproduct into a thermoplastic – a polymer that becomes pliable above a specific temperature. Researchers accomplished this by reconstructing larger lignin molecules either through a chemical reaction with or by washing with methanol. Through these simple , they created a crosslinked rubber-like material that can also be processed like plastics.

"Our work addresses a pathway to utilize lignin as a sustainable, material for synthesis of thermoplastics that are recyclable," said Naskar, a member of the Department of Energy laboratory's Material Science and Technology Division.

Instead of using nearly 50 million tons of lignin byproduct produced annually as a low-cost fuel to power paper and pulp mills, the material can be transformed into a lignin-derived high-value plastic. While the lignin in raw form is worth just pennies a pound as a fuel, the value can potentially increase by a factor of 10 or more after the conversion.

Naskar noted that earlier work on lignin-based plastics utilized material that was available from pulping industries and was a significantly degraded version of native lignin contained in biomass. This decomposition occurs during harsh chemical treatment of biomass.

"Here, however, we attempted to reconstruct larger lignin molecules by a simple crosslinking chemistry and then used it as a substitute for rigid phase in a formulation that behaves like crosslinked rubbers that can also be processed like plastics," Naskar said.

Crosslinking involves building large lignin molecules by combining smaller molecules where formaldehyde helps to bridge the smaller units by chemical bonding. Naskar envisions the process leading to lower cost gaskets, window channels, irrigation hose, dashboards, car seat foam and a number of other plastic-like products.

A similar material can also be made from lignin produced in biorefineries.

Explore further: Building the ideal rest stop for protons

More information: The paper, titled "Turning renewable resources into value-added polymer: development of lignin-based thermoplastic," is available at http://pubs.rsc.org/en/content/articlepdf/2012/gc/c2gc35933b?page=search

Related Stories

Battery team gets a charge out of lignin

Aug 17, 2012

(Phys.org) -- Creating energy from wood waste has progressed from novel idea to renewable energy work in development. Researchers from Poland and Sweden are using a waste product from the paper making process ...

Wood completely broken down into its component parts

Oct 24, 2012

Crude oil is getting scarce. This is why researchers are seeking to substitute petroleum-based products - like plastics - with sustainable raw materials. Waste wood, divided into lignin and cellulose, could ...

Recommended for you

Building the ideal rest stop for protons

8 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

10 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0