Implantable medical devices powered by the ear itself

Nov 07, 2012 by Larry Hardesty
A close-up of the new chip, equipped with a radio transmitter, which is powered by a natural battery found deep in the mammalian ear. Credit: Patrick P. Mercier

Deep in the inner ear of mammals is a natural battery—a chamber filled with ions that produces an electrical potential to drive neural signals. In today's issue of the journal Nature Biotechnology, a team of researchers from MIT, the Massachusetts Eye and Ear Infirmary (MEEI) and the Harvard-MIT Division of Health Sciences and Technology (HST) demonstrate for the first time that this battery could power implantable electronic devices without impairing hearing.

The devices could monitor in the ears of people with hearing or balance impairments, or responses to therapies. Eventually, they might even deliver therapies themselves.

In experiments, Konstantina Stankovic, an otologic surgeon at MEEI, and HST graduate student Andrew Lysaght implanted electrodes in the biological batteries in ' ears. Attached to the electrodes were low-power electronic devices developed by MIT's Laboratories (MTL). After the implantation, the guinea pigs responded normally to , and the devices were able to wirelessly transmit data about the chemical conditions of the ear to an external receiver.

"In the past, people have thought that the space where the high potential is located is inaccessible for , because potentially it's very dangerous if you encroach on it," Stankovic says. "We have known for 60 years that this battery exists and that it's really important for normal hearing, but nobody has attempted to use this battery to power useful electronics."

The ear converts a —the vibration of the —into an electrochemical signal that can be processed by the brain; the biological battery is the source of that signal's current. Located in the part of the ear called the , the battery chamber is divided by a membrane, some of whose cells are specialized to pump ions. An imbalance of potassium and on opposite sides of the membrane, together with the particular arrangement of the pumps, creates an electrical voltage.

The chip is small enough to fit in the cavity of the middle ear. Credit: Patrick P. Mercier

Although the voltage is the highest in the body (outside of individual cells, at least), it's still very low. Moreover, in order not to disrupt hearing, a device powered by the biological battery can harvest only a small fraction of its power. Low-power chips, however, are precisely the area of expertise of Anantha Chandrakasan's group at MTL.

The MTL researchers—Chandrakasan, who heads MIT's Department of Electrical Engineering and Computer Science; his former graduate student Patrick Mercier, who's now an assistant professor at the University of California at San Diego; and Saurav Bandyopadhyay, a graduate student in Chandrakasan's group—equipped their chip with an ultralow-power radio transmitter: After all, an implantable medical monitor wouldn't be much use if there were no way to retrieve its measurements.

But while the radio is much more efficient than those found in cellphones, it still couldn't run directly on the biological battery. So the MTL chip also includes power-conversion circuitry—like that in the boxy converters at the ends of many electronic devices' power cables—that gradually builds up charge in a capacitor. The voltage of the biological battery fluctuates, but it would take the control circuit somewhere between 40 seconds and four minutes to amass enough charge to power the radio. The frequency of the signal was thus itself an indication of the electrochemical properties of the .

To reduce its power consumption, the control circuit had to be drastically simplified, but like the radio, it still required a higher voltage than the biological battery could provide. Once the control circuit was up and running, it could drive itself; the problem was getting it up and running.

The MTL researchers solve that problem with a one-time burst of radio waves. "In the very beginning, we need to kick-start it," Chandrakasan says. "Once we do that, we can be self-sustaining. The control runs off the output."

Stankovic, who still maintains an affiliation with HST, and Lysaght implanted electrodes attached to the MTL chip on both sides of the membrane in the biological battery of each guinea pig's ear. In the experiments, the chip itself remained outside the guinea pig's body, but it's small enough to nestle in the cavity of the middle ear.

Cliff Megerian, chairman of the otolaryngology department at Case Western Reserve University, says that he sees three possible applications of the researchers' work: in cochlear implants, diagnostics and implantable hearing aids. "The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant," Megerian says. "Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output."

"I'm not ready to say that the present iteration of this technology is ready," Megerian cautions. But he adds that, "If we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future."

Explore further: New tech aims to improve communication between dogs and humans

More information: Paper: DOI: 10.1038/nbt.2394

Related Stories

A middle-ear microphone

Apr 30, 2012

(Medical Xpress) -- Cochlear implants have restored basic hearing to some 220,000 deaf people, yet a microphone and related electronics must be worn outside the head, raising reliability issues, preventing ...

Revolutionizing medicine, one chip at a time

Mar 09, 2010

In the past several decades, microchips have transformed consumer electronics, enabling new products from digital watches and pocket-sized calculators to laptop computers and digital music players.

Recommended for you

Method to reconstruct overt and covert speech

7 hours ago

Can scientists read the mind, picking up inner thoughts? Interesting research has emerged in that direction. According to a report from New Scientist, researchers discuss their findings in converting brain ...

Study says upgrading infrastructure could reduce flood damage

Oct 29, 2014

The severe flooding that devastated a wide swath of Colorado last year might have been less destructive if the bridges, roads and other infrastructure had been upgraded or modernized, according to a new study from the University ...

Walk through buildings from your own device

Oct 29, 2014

Would you like to visit The Frick Collection art museum in New York City but can't find the time? No problem. You can take a 3-D virtual tour that will make you feel like you are there, thanks to Yasutaka ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.