Fish ear bones and their distinctive growth rings offer clues to the likely impacts of climate change in aquatic world

November 28, 2012
Magnified thin section taken from the otolith of a five year old tiger flathead caught in eastern Bass Strait.

(Phys.org)—The earbones, or 'otoliths', help fish to detect movement and to orient themselves in the water. Otoliths set down annual growth rings that can be measured and counted to estimate the age and growth rates of fish.

"Otoliths can form the basis of new techniques for modelling growth, productivity and distribution in future environments," said Dr John Morrongiello of CSIRO's Wealth from Oceans Flagship, lead author of a paper published online in Nature today.

"They are widely used to support fishery stock assessments, and are beginning to be used to measure and predict ecological responses to ocean warming and climate change.

"Millions of otoliths are archived in research laboratories and museums worldwide, and many live for decades and some, such as orange roughy, live for up to 150 years.

"Their otoliths record variations in growth rates that reflect environmental conditions. Longer-lived fish and older samples take us back as far as the 1800s."

Magnified thin section taken from the otolith of an eight year old golden perch caught in Lake Eppalock.

The paper, co-authored by Dr Ron Thresher and Dr David Smith of CSIRO, builds on earlier research by Dr Thresher that identified the potential of using fish 'hard parts', (such as otoliths), and corals to understand environmental change. It outlines a framework in which Australian research institutions can analyse hard parts and assess past and future impacts on a range of species.

In the next research phase, scientists at CSIRO, the Australian Institute of Marine Science and the University of Adelaide will study selected species of , including tiger flathead, black bream, blue gropers, barramundi and tropical snappers.

"We will use otoliths to investigate the environmental drivers of fish growth for many species around Australia," Dr Morrongiello said.

"This will allow us to generate a continental-scale evaluation of on Australia's fishes and help to guide the conservation and management of our aquatic environments into the future."

This video is not supported by your browser at this time.
Dr John Morrongiello describes otoliths.

Dr Thresher said there had already been extensive use of hard part archives from corals to reflect on climate variability, such as El Niño events, and to reconstruct environmental histories.

"Any change identified in growth and age maturity, especially of commercially-important species, clearly has implications for forecasting future stock states and the sustainable management of fisheries," Dr Thresher said.

"A better ability to predict such change will greatly enhance our ability to forecast, manage and adapt to the impacts of climate change in marine and freshwater systems."

Explore further: Fish growth changes enhanced by climate change

More information: Morrongiello, J. et al, Thresher, R. and Smith, D., Aquatic biochronologies and climate change, Nature Climate Change, 27 November 2012. www.nature.com/nclimate/journal/v2/n12/full/nclimate1616.html

Related Stories

Fish growth changes enhanced by climate change

April 27, 2007

Changes in growth rates in some coastal and long-lived deep-ocean fish species in the south west Pacific are consistent with shifts in wind systems and water temperatures, according to new Australian research published in ...

Helping Albacore tuna come out of the can

August 11, 2009

(PhysOrg.com) -- Scientists are set to study the earbones and organs of more than 2000 albacore tuna to better understand the growth, age and breeding patterns of this increasingly important species.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.