Study finds how bacteria inactivate immune defenses

Nov 15, 2012
Salmonella bacteria (green) invade a red blood cell. Credit: Professor David Holden, Imperial College London

A new study by researchers at Imperial College London has identified a way in which Salmonella bacteria, which cause gastroenteritis and typhoid fever, counteract the defence mechanisms of human cells.

One way in which our cells fight off infections is by engulfing the smaller and then attacking them with toxic enzymes contained in small packets called .

Published today in Science, the study has shown that Salmonella protects itself from this attack by depleting the supply of toxic enzymes. Lysosomes constantly need to be replenished with fresh enzymes that are generated from a factory within our cells. These enzymes are carried from the factory along a dedicated transport pathway. After dropping off new enzymes at lysosomes, the transport carriers are sent back to the factory to pick up new enzymes.

In the study, led by Professor David Holden from the Department of Medicine and MRC Centre for Molecular Bacteriology and Infection, the group discovered that Salmonella has developed a specific way to interfere with the system that restocks the lysosomes with enzymes. They found that after bacteria have been engulfed by the cell, but before they are killed, Salmonella injects a protein that prevents the cell from recycling the transport carriers between the factory and the lysosome.

This means that Salmonella effectively cuts off the supply line of the enzymes that would otherwise kill it. As a result, the enzymes get re-routed out of the cell and the lysosomes lose their potency. Salmonella is then able to exploit the disarmed lysosomes by feeding off the nutrients they contain. Professor Holden said: "This seems to be a very effective way for these to interfere with our cell's defence mechanisms, and then exploit the defective lysosomes to their own benefit." "Our challenge now is to understand in greater detail how the injected Salmonella protein works at the molecular level, and – potentially – to exploit our findings to develop more effective vaccines. This is especially important since many Salmonella strains are now resistant to antibiotics." Different strains of Salmonella cause , blood infections and , which together are responsible for millions of human illnesses and deaths each year.

Explore further: Do sexually transmitted diseases drive variation in mammalian immunity?

Related Stories

Salmonella in garden birds responsive to antibiotics

Jun 02, 2008

Scientists at the University of Liverpool have found that Salmonella bacteria found in garden birds are sensitive to antibiotics, suggesting that the infection is unlike the bacteria found in livestock and humans.

Intestinal cell defense mechanism against bacteria

May 27, 2011

Salmonella is widely prevalent in the animal kingdom. The reason we do not suffer from severe intestinal infections very often is due to our body's defence system, which manages to digest invading bacteria. ...

Recommended for you

How malaria-spreading mosquitoes can tell you're home

Jan 22, 2015

Females of the malaria-spreading mosquito tend to obtain their blood meals within human dwellings. Indeed, this mosquito, Anopheles gambiae, spends much of its adult life indoors where it is constantly expose ...

Study uncovers secrets of a clump-dissolving protein

Jan 22, 2015

Workhorse molecules called heat-shock proteins contribute to refolding proteins that were once misfolded and clumped, causing such disorders as Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's ...

Using viruses to find the cellular Achilles heel

Jan 22, 2015

Back-to-back studies from researchers at the Gladstone Institutes have exposed new battle tactics employed by two deadly viruses: hepatitis C (HCV) and the Kaposi's sarcoma-associated herpesvirus (KSHV). Published in the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.