Zeroing in on the 'science of sound propagation' in burning buildings

Oct 23, 2012

An acoustic navigation system being developed by a team of University of Texas at Austin researchers studying the science of sound propagation inside burning buildings may one day become a life-saving addition to firefighters' arsenal of tools.

The team will provide details about their multi-faceted research at the Acoustical Society of America's 164th Meeting, October 22-26, 2012, in Kansas City, Missouri.

"Our study is focusing on locating open doors inside burning buildings to gain a better understanding of how acoustic propagation is affected when flames are between the device and a doorway," explains Mustafa Abbasi, a graduate research assistant.

Inside buildings engulfed in flames and smoke, firefighters currently rely on tools such as thermal imaging cameras to help them not only detect obstacles and passageways, but also to judge distances to them. But unfortunately, heat and open flames can significantly degrade the performance of these cameras.

To address this, the team decided to create a complementary sonar-based imaging technique to supplement TIC technology.

They initially selected an ultrasonic device similar to the ones used in cars' reverse parking sensors to build their acoustic navigation device, but quickly discovered that fire strongly distorts ultrasonic .

The team then turned to a more advanced acoustic source, called a "parametric array," which is capable of creating audible sound that remains focused.

"Using a parametric array enables us to effectively see through moderate-sized flames," says Abbasi. "Now, we're investigating the effect of smoke on acoustic propagation. and smoke are interrelated, but TIC images are degraded less by smoke. We believe that combining sensing with other technologies will improve the capabilities of these imaging devices."

Yet another facet of this project involves working to improve personal alert safety system (PASS) devices used to locate incapacitated firefighters. The team is collaborating with the National Fire Protection Association's Fire Protection Research Foundation and the Federal Emergency Management Agency (FEMA) to study how the signal emitted by the PASS device propagates inside burning buildings.

Explore further: Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser

add to favorites email to friend print save as pdf

Related Stories

Wildfire razes Canadian town

May 16, 2011

A wildfire engulfed the town of Slave Lake in western Canada, forcing the evacuation of its 7,000 residents at the start of the forest fire season, authorities said Monday.

NRL begins field tests of laser acoustic propagation

Jan 12, 2011

An NRL research team led by physicist, Dr. Ted Jones, Plasma Physics Division, performed the first successful long distance acoustic propagation and shock generation demonstration of their novel underwater ...

One-way transmission system for sound waves

Jul 26, 2011

While many hotel rooms, recording studios, and even some homes are built with materials to help absorb or reflect sound, mechanisms to truly control the direction of sound waves are still in their infancy. ...

Recommended for you

Timely arrival of Pharao space clock

11 hours ago

ESA has welcomed the arrival of Pharao, an important part of ESA's atomic clock experiment that will be attached to the International Space Station in 2016.

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

User comments : 0