Researchers discover turbo switch of calcium pump in biological cells

Oct 21, 2012
This shows the structure of the calcium pump switch in cells of the plant thale cress (Arabidopsis thaliana). Credit: Henning Tidow et al.; University of Aarhus

When animals and plants are exposed to influences such as bacterial attack, odour and cold, calcium ions flow into the cells. The calcium provides the cells with a signal about what is going on outside, but as high concentrations of calcium are toxic to the cells, it must be quickly pumped out again. Researchers from the Danish National Research Foundation's PUMPkin Centre at both the University of Copenhagen and Aarhus University have now shown that calcium pumps in the cell's outer membrane adjust the pump speed very accurately to the calcium concentration. These findings have just been published in the journal Nature.

The calcium pump is located in the that surrounds the cells of humans, animals and plants. Leading researchers from Aarhus University and the University of Copenhagen have now provided new information of how the calcium pump regulates the amount of calcium in the cells. This amount is critical to the health and survival of the cell.

"It turns out that the calcium pump can accurately measure the cell's calcium content and adjust its speed in accordance with this information. This prevents the concentration of calcium ions in the from reaching a critical concentration that damages the cells. The calcium pump is inactive when the concentration of calcium is low, but it is activated stepwise when the increases," say Postdoctoral Fellows Henning Tidow and Lisbeth Rosager Poulsen, who took part in the joint research project.

The researchers' starting point was the calcium pump located in the of the thale cress (), but the also applies to the corresponding calcium pump in humans and animals.

Previous studies have shown that calcium pumps in both animals and plants work together with a protein called calmodulin. When there are many calcium ions in a cell, some of these bind to calmodulin, which is thereby able to activate the calcium pump.

"We purified the part of the calcium pump that interacts with calcium-activated calmodulin, and we managed to crystallise a protein complex. To our great surprise, we found that the calcium pump binds two calmodulin proteins, and not just one as always assumed," explains Dr Tidow.

This shows crystallized samples of the calcium pump complex of thale cress (Arabidopsis thaliana). Credit: Henning Tidow, University of Aarhus

The fact that two calmodulin proteins are involved in the regulation of the calcium pump activity means that the calcium pump has three steps. It is switched off when no calcium-activated calmodulin is bound, it pumps at medium speed when binding occurs at one calmodulin protein, and it pumps at full speed when both calmodulin proteins are bound.

"Calcium pumps need considerable energy to transport calcium out of the cell. It is therefore important that they are only activated when there is a need to remove calcium. With two calmodulin-binding domains in the calcium pump, the cell can adjust the transportation to be energy efficient, at the same time as being able to quickly reduce the number of if the concentration approaches a toxic level," Dr Poulsen concludes.

The researchers also used mathematical network modelling to further identify whether the calcium pump works differently depending on whether it is activated by zero, one or two calmodulin proteins. This revealed another characteristic of calcium pump regulation of calcium in the cell.

"We could show that the cell only responded to incoming calcium when concentrations above carefully defined threshold values were found. This may be important for the way cells define their status in the circadian rhythm or during cell division, for example," concludes Dr Tidow.

Explore further: Sex chromosomes—why the Y genes matter

More information: DOI: 10.1038/nature11539

Related Stories

Like eavesdropping at a party

Jul 31, 2008

Cells rely on calcium as a universal means of communication. For example, a sudden rush of calcium can trigger nerve cells to convey thoughts in the brain or cause a heart cell to beat. A longstanding mystery has been how ...

Researchers uncover activation signal for Aurora-A oncogene

Sep 07, 2010

Aurora-A kinase (AurA) is an enzyme that is hyperactive in many cancers and drives tumor cell proliferation. Several AurA inhibitors are currently being tested in clinical trials to see if they slow tumor growth. Now, researchers ...

Channeling into cell control

Jan 20, 2012

A research team from the RIKEN Brain Science Institute in Wako, Japan, has visualized and accurately modeled the molecular changes that open and close the internal membrane channels for calcium ions within ...

Calcium is spark of life, kiss of death for nerve cells

Mar 01, 2007

Oregon Health & Science University research shows how calcium regulates the recharging of high-frequency auditory nerve cells after they've fired a burst of signals, and it may have implications for neurological disorders.

Squeeze play: Protein's grip like a baseball bunter's

Oct 10, 2006

Like all good baseball players, the protein calmodulin appreciates the importance of maintaining a good grip. A vital regulatory protein in all plants and animals, calmodulin is known to grab hold of hundreds of different ...

Recommended for you

Sex chromosomes—why the Y genes matter

4 hours ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

Better mouse model enables colon cancer research

17 hours ago

Every day, it seems, someone in some lab is "curing cancer." Well, it's easy to kill cancer cells in a lab, but in a human, it's a lot more complicated, which is why nearly all cancer drugs fail clinical ...

How to get high-quality RNA from chemically complex plants

May 26, 2015

Ask any molecular plant biologist about RNA extractions and you might just open up the floodgates to the woes of troubleshooting. RNA extraction is a notoriously tricky and sensitive lab procedure. New protocols out of the ...

Plant fertility—how hormones get around

May 26, 2015

Researchers at Tokyo Institute of Technology have identified a transporter protein at the heart of a number of plant processes associated with fertility and possibly aging.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.