Technology developed for visual 'cloaking' applied to enable more efficient transfer of electrons

October 12, 2012 by David L. Chandler
Diagram shows the 'probability flux' of electrons, a representation of the paths of electrons as they pass through an 'invisible' nanoparticle. While the paths are bent as they enter the particle, they are subsequently bent back so that they re-emerge from the other side on the same trajectory they started with — just as if the particle wasn't there. Credit: Bolin Liao et al.

A new approach that allows objects to become "invisible" has now been applied to an entirely different area: letting particles "hide" from passing electrons, which could lead to more efficient thermoelectric devices and new kinds of electronics.

The concept—developed by MIT graduate student Bolin Liao, former postdoc Mona Zebarjadi (now an assistant professor at Rutgers University), research scientist Keivan Esfarjani, and mechanical engineering professor Gang Chen—is described in a paper in the journal .

Normally, electrons travel through a material in a way that is similar to the motion of , including light; their behavior can be described by wave equations. That led the MIT researchers to the idea of harnessing the cloaking mechanisms developed to shield objects from view—but applying it to the movement of electrons, which is key to electronic and .

Previous work on cloaking objects from view has relied on so-called metamaterials made of with unusual properties. The used for cloaking cause to bend around an object and then meet on the other side, resuming their original path—making the object appear invisible.

"We were inspired by this idea," says Chen, the Carl Richard Soderberg Professor of Power Engineering at MIT, who decided to study how it might apply to electrons instead of light. But in the new electron-cloaking material developed by Chen and his colleagues, the process is slightly different.

The MIT researchers modeled nanoparticles with a core of one material and a shell of another. But in this case, rather than bending around the object, the electrons do actually pass through the particles: Their paths are bent first one way, then back again, so they return to the same trajectory they began with.

In , the concept appears to work, Liao says. Now, the team will try to build actual devices to see whether they perform as expected. "This was a first step, a theoretical proposal," Liao says. "We want to carry on further research on how to make some real devices out of this strategy."

While the initial concept was developed using particles embedded in a normal semiconductor substrate, the MIT researchers would like to see if the results can be replicated with other materials, such as two-dimensional sheets of graphene, which might offer interesting additional properties.

The MIT researchers' initial impetus was to optimize the materials used in thermoelectric devices, which produce an electrical current from a temperature gradient. Such devices require a combination of characteristics that are hard to obtain: high electrical conductivity (so the generated current can flow freely), but low thermal conductivity (to maintain a temperature gradient). But the two types of conductivity tend to coexist, so few materials offer these contradictory characteristics. The team's simulations show this electron-cloaking material could meet these requirements unusually well.

The simulations used particles a few nanometers in size, matching the wavelength of flowing electrons and improving the flow of electrons at particular energy levels by orders of magnitude compared to traditional doping strategies. This might lead to more efficient filters or sensors, the researchers say. As the components on computer chips get smaller, Chen says, "we have to come up with strategies to control electron transport," and this might be one useful approach.

The concept could also lead to a new kind of switches for electronic devices, Chen says. The switch could operate by toggling between transparent and opaque to electrons, thus turning a flow of them on and off. "We're really just at the beginning," he says. "We're not sure how far this is going to go yet, but there is some potential" for significant applications.

Xiang Zhang, a professor of at the University of California at Berkeley who was not involved in this research, says "this is very exciting work" that expands the concept of cloaking to the domain of . The authors, he says, "uncovered a very interesting approach that may be very useful to thermoelectric applications."

Explore further: New invisibility cloak allows object to 'see' out through the cloak

More information:

Related Stories

Explained: Thermoelectricity

April 27, 2010

( -- Thermoelectricity is a two-way process. It can refer either to the way a temperature difference between one side of a material and the other can produce electricity, or to the reverse: the way applying an ...

Researchers create first 3D invisibility cloak

August 11, 2011

( -- Science has taken one more step towards creating a true real-life cloaking device. Assistant Professor Andrea Alůin and his colleagues at the University of Texas at Austin have successfully created a ...

New material shares many of graphene's unusual properties

April 24, 2012

Graphene, a single-atom-thick layer of carbon, has spawned much research into its unique electronic, optical and mechanical properties. Now, researchers at MIT have found another compound that shares many of graphene’s ...

Recommended for you

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.