Researchers create first 3D invisibility cloak

August 11, 2011 by Bob Yirka, report

Photographs of: (top) the assembled cloak on the test cylinder with end caps; (bottom left) a cross-section view of the assembly with end cap removed; (bottom right) a shell segment edge with copper tape used to form the metallic strip for the metamaterial cloak. Image from arXiv:1107.3740v1
( -- Science has taken one more step towards creating a true real-life cloaking device. Assistant Professor Andrea Alůin and his colleagues at the University of Texas at Austin have successfully created a cloaking device capable of "hiding" a 3D object in free space from microwaves. The team describes how they used a "plasmonic" shell to hide a cigar shaped object from one microwave polarization in their pre-printed paper on arXiv.

Cloaking devices are based on so-called metamaterials and follow up on the pioneering efforts of David Smith and his team at Duke University in North Carolina, who in 2006 first discovered it was possible through the use of metamaterials, to deflect microwave radiation around an object, thus rendering it, virtually invisible. Subsequent work by other research teams have led to 2D or 3D carpet cloaking devices that are able to cloak an object pressed against a plane. With this new research, Alůin and his team claim to have created a cloaking device able to hide an object in free space.

To create the device, the team used a plasmonic shell to cover the object being cloaked. Plasmonic materials (normally used when making solar cells) are able to bend electromagnetic radiation in unique ways, and in this case, cancel the light scattered by the object. The shell works because it is has a polarization opposite to the scattered light and thus cancels it out, effectively cloaking the object hidden within. The object in this case was a hollow dielectric (an electrical insulator that can be polarized) cylinder. The shell was comprised of the same material though it was constructed from segments separated by precision cut copper tape and held together by end-caps. The resultant cloaking device was able to suppress scattering all around the object and from more than one angle.

In the paper Alůin suggests that he knows of a way to create a similar that would work with un-polarized light, which would allow more than just one frequency of microwaves to be used, but in this case went with just one for simplicity’s sake. He also says simulations show that the same technique should work for other bandwidths, presumably infrared and optical wavelengths.

Explore further: New invisibility cloak allows object to 'see' out through the cloak

More information: Experimental 3D Plasmonic Cloaking in Free Space, David Rainwater, Aaron Kerkhoff, Kevin Melin, Andrea Alu, arXiv:1107.3740v1 [cond-mat.mtrl-sci]

We report the first experimental verification of a metamaterial cloak for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite dielectric cylinder. We verify that scattering suppression is obtained all around the object and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our experiment confirms that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects at microwave frequencies.

via PhysicsWorld

Related Stories

Next generation cloaking device demonstrated

January 15, 2009

A device that can bestow invisibility to an object by "cloaking" it from visual light is closer to reality. After being the first to demonstrate the feasibility of such a device by constructing a prototype in 2006, a team ...

New invisibility cloak hides objects from human view

July 27, 2011

For the first time, scientists have devised an invisibility cloak material that hides objects from detection using light that is visible to humans. The new device is a leap forward in cloaking materials, according to a report ...

Researchers create “antimagnet” cloaking device

August 5, 2011

In what seems like one new cloaking device being discovered after another, researchers in Spain have modeled a device that they say can prevent magnetism from leaking out of a containment container and also prevent it from ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.