New self-healing coating for aluminum developed to replace cancer-causing product

Oct 22, 2012
A University of Nevada, Reno research team has developed a new environmentally-friendly self-healing coating for aluminum that can be used for defense and aerospace applications. Graduate students David Rodriquez and Dev Chidambaram, principal investigator, are studying an aluminum sample after the scratch test using a Raman microspectroscope to show the presence of molybdate in the scratched region. Credit: Photo by Mike Wolterbeek, University of Nevada, Reno.

A research team at the University of Nevada, Reno has developed a new environmentally-friendly coating for aluminum to replace the carcinogenic chromate coatings used in aerospace applications. The chromate conversion coatings have been used for more than 50 years to protect aluminum from corrosion.

The team presented their research last week at the international Pacific Rim Meeting on Electrochemical and Solid-State Science in Hawaii.

"It was well received at the conference," Dev Chidambaram, lead scientist and assistant professor of at the University of Nevada, said. "There is no question that this will be able to replace the chromate-based . Even though the coating formulation is yet to be optimized, the coating has shown exceptional performance."

Attempts to replace chromate coatings with non-toxic coatings have been underway since the 1980s. The awareness on effects of chromates was brought to the forefront in 1993 by the real-life incident involving Erin Brokovich and depicted in the movie released in 2000 of the same name. Although the use of chromates for consumer and automotive applications has been banned, it is still in use by the defense and aerospace industries under various exemptions.

This video is not supported by your browser at this time.
A University of Nevada, Reno research team has developed a new environmentally-friendly self-healing coating for aluminum that can be used for defense and aerospace applications. Time lapse video for formation of corrosion protective molybdate coating (blue) on aerospace aluminum alloy AA2024-T6 in less than 8 minutes. Credit: Professor Dev Chidambaram, University of Nevada, Reno.

The carcinogenic coatings were exempted from the ban due to unavailability of suitable replacement combined with the high human and financial cost of failure from . The search for a suitable replacement has been elusive primarily due to one main characteristic of the coating referred to as "self-healing," the ability of the coating to heal itself after being damaged or scratched.

When scratched, the coating components from nearby sites migrate to the damaged region and re-protect the underlying alloy. A short video of the coating formation is on Chidambaram's website, www.electrochemical.org/ under the heading "Cool Videos."

Chidambaram's formulation performs comparably to the chromate formula in its ability for self-healing, which is important to the defense and aerospace industry. The coating can be applied to all aluminum products. The new formula creates an environmentally-benign molybdate-based coating that provides corrosion protection to aluminum, used for aircraft and spacecraft. These coatings, when damaged, will re-heal themselves.

The University of Nevada, Reno team developed and tested more than 300 coatings before arriving at this formulation. They used a complimentary suite of advanced surface analytical techniques such as Raman microspectroscopy, Fourier transform infrared spectroscopy, energy dispersive spectroscopy, secondary ion mass spectroscopy and X-ray photoelectron spectroscopy to conclusively prove the presence of molybdate in the scratched region. Further, using electrochemical testing, the team showed the coating re-protected itself via self-healing upon scratch test.

The team includes graduate student David Rodriquez, who conducted the extensive testing on the materials, and undergraduate aerospace engineering major at the University of Colorado, Boulder intern Roshan Misra, who began the project as a high school summer intern from Reno High School. The team is still working to optimize the coating formulation for even better protection.

"This has taken 14 years of work, continuing on work I did at the State University of New York at Stony Brook and the Brookhaven National Laboratory," Chidambaram said.

Explore further: Deconstruction of avant-garde cuisine could lead to even more fanciful dishes

add to favorites email to friend print save as pdf

Related Stories

Eco-friendly metal coating replacement for chromate

Oct 30, 2009

(PhysOrg.com) -- CSIRO has developed a novel coating technology, "Quench Coat", to protect galvanised products from 'white rust' ? the form of zinc oxide that tarnishes freshly galvanised coatings, making ...

URI researchers develop corrosion-resistant polymer

Aug 02, 2004

A new group of non-toxic, corrosion-resistant polymers developed by University of Rhode Island scientist Sze Yang will likely put a smile on the face of Erin Brockovich. The polymers are designed as a replacement for chro ...

Graphene is thinnest known anti-corrosion coating

Feb 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears ...

New coating protects steel and superalloys

Mar 23, 2006

Researchers at Pacific Northwest National Laboratory have developed a new ceramic-based coating for steel and superalloys that prevents corrosion, oxidation, carburization and sulfidation that commonly occur ...

Recommended for you

Characterizing an important reactive intermediate

Oct 01, 2014

An international group of researchers led by Dr. Warren E. Piers (University of Calgary) and Dr. Heikki M. Tuononen (University of Jyväskylä) has been able to isolate and characterize an important chemical ...

Surfaces that communicate in bio-chemical Braille

Oct 01, 2014

A Braille-like method that enables medical implants to communicate with a patient's cells could help reduce biomedical and prosthetic device failure rates, according to University of Sydney researchers.

New material steals oxygen from the air

Sep 30, 2014

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

User comments : 0