New studies reveal connections between animals' microbial communities and behavior

October 11, 2012 by Beth Gavrilles
New studies reveal connections between animals' microbial communities and behavior
Vanessa O. Ezenwa

(—New research is revealing surprising connections between animal microbiomes—the communities of microbes that live inside animals' bodies—and animal behavior, according to a paper by University of Georgia ecologist Vanessa O. Ezenwa and her colleagues. The article, just published in the Perspectives section of the journal Science, reviews recent developments in this emerging research area and offers questions for future investigation.

The paper grew out of a National Science Foundation-sponsored workshop on new ways to approach the study of animal behavior. Ezenwa, an associate professor in the UGA Odum School of Ecology and College of Veterinary Medicine department of , and her coauthors were interested in the relationship between animal behavior and .

Most research on the interactions between microbes and their animal hosts has focused on pathogens, Ezenwa said. Less is known about beneficial microbes or animal microbiomes, but several recent studies have begun to explore these connections.

"We know that animal behavior plays a critical role in establishing microbiomes," she said. "Once they're established, the microbiomes then influence animal behavior in lots of ways that have far-reaching consequences. That's what we were trying to highlight in this article."

Bumble bees, for example, obtain the microbes they need through social contact with nest mates, including consuming their nest mates' feces—a not uncommon method for animals to acquire microbes. Green iguanas establish their intestinal microbiomes by feeding first on soil and later on the feces of adult iguanas.

"There are a lot of behaviors that animals might have that allow them to get the different microbes they need at different points of their lives," Ezenwa said.

Microbes, in their turn, influence a wide range of , including feeding, mating and .

One recent study found that prefer to mate with others that have microbiomes most similar to their own. Another found that African malaria mosquitoes were less attracted to humans who had a greater diversity of microbes on their skin, possibly because certain microbes produce chemicals that repel these mosquitoes.

Other studies have focused on understanding the mechanisms by which microbes influence behavior.

"Recent experiments have been able to assess the molecules that are involved in communication between microbes in the gut and the brain of mice, showing that microbes are associated with shifts in things like depression and anxiety in these mice," she said. "There are huge implications in the role these microbes play in regulating neural function."

Ezenwa's own work involves investigating how social behavior and interactions between organisms might increase their likelihood of acquiring parasites and pathogens. She is starting a new project examining animal behavior and microbiomes in relation to infectious disease.

"As in the example of the , behavior might control the microbes an animal acquires, and those might then influence the animal's vulnerability to pathogens," she said.

The authors conclude that it will take a combination of molecular and experimental approaches to answer questions about the complex interactions between microbiomes and animal behaviors.

"This is a new, emerging topic that's worthy of much more investigation," Ezenwa said.

Explore further: Scientists Expand Microbe 'Gene Language'

More information:

Related Stories

Scientists Expand Microbe 'Gene Language'

February 28, 2007

An international group of scientists has expanded the universal language for the genes of both disease-causing and beneficial microbes and their hosts. This expanded "lingua franca," called The Gene Ontology (GO), gives researchers ...

Recommended for you

Winter season reverses outcome of fruit fly reproduction

November 24, 2015

Male fruit flies could find their chances of fathering offspring radically reduced if they are last in the queue to mate with promiscuous females before winter arrives, according to new University of Liverpool research.

New insight into leaf shape diversity

November 24, 2015

Many of us probably remember the punnett squares by which we were introduced to the idea of genetic inheritance in school: a dominant allele in each of my brown-eyed parents hides a recessive allele that explains my blue ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.