Chaperone protein subverts removal of glaucoma-causing protein

Oct 09, 2012

The chaperone protein Grp94 can interfere with the clearance of another protein known to cause the glaucoma when mutated, a new study led by researchers at the University of South Florida has found. Using a cell model, the researchers also demonstrated that a new specific inhibitor of Grp94 facilitates clearance of the genetically-defective protein, called myocilin, from cells.

Reported online this month in JBC (The ), the discoveries could lead to a new treatment for some hereditary cases of glaucoma, an eye disease that is a leading cause of blindness, said principal investigator Chad Dickey, PhD, associate professor of at the USF Health Byrd Alzheimer's Institute.

"When mutated, the glaucoma-causing protein becomes toxic to a cell network known as the trabecular meshwork cells that regulate pressure within the eye," Dickey said. "Once these cells die, the increases, causing glaucoma."

Genetic defects of myocilin account for approximately 8 to 36 percent of hereditary juvenile-onset glaucoma and 5 to 10 percent of adult-onset hereditary glaucoma.

The researchers suggest that mutant myocilin, triggered by an interaction with the chaperone Grp94, is highly resistant to degradation, thus clogging the protein quality control pathway and subverting efficient removal of the glaucoma-causing protein. So, the development of targeted therapies to inhibit Grp94 may be beneficial for patients suffering from myocilin glaucoma.

Explore further: Large-scale identification and analysis of suppressive drug interactions

More information: "Grp94 triage of mutant myocilin through ERAD subverts a more efficient autophagic clearance mechanism;" Amirthaa Suntharalingam, Jose F. Abisambra, John C. O'Leary III, John Koren III, Bo Zhang, Myung Kuk Joe, Laura J. Blair, Shannon E. Hill, Umesh K. Jinwal, Matthew Cockman, Adam S. Duerfeldt, Stanislav Tomarev, Brian S.J. Blagg, Raquel L. Lieberman, and Chad A. Dickey; JBC: The Journal of Biological Chemistry; published Oct. 3, 2012 as manuscript M112.384800

add to favorites email to friend print save as pdf

Related Stories

Study links genes to common forms of glaucoma

Apr 26, 2012

Results from the largest genetic study of glaucoma, a leading cause of blindness and vision loss worldwide, showed that two genetic variations are associated with primary open angle glaucoma (POAG), a common form of the disease. ...

Recommended for you

New method to analyse how cancer cells die

8 hours ago

(Phys.org) —A team from The University of Manchester – part of the Manchester Cancer Research Centre - have found a new method to more efficiently manufacture a chemical used to monitor cancer cells.

The anti-inflammatory factory

Apr 22, 2014

Russian scientists, in collaboration with their colleagues from Pittsburgh University, have discovered how lipid mediators are produced. The relevant paper was published in Nature Chemistry. Lipid mediators are molecules that p ...

User comments : 0

More news stories

New method to analyse how cancer cells die

(Phys.org) —A team from The University of Manchester – part of the Manchester Cancer Research Centre - have found a new method to more efficiently manufacture a chemical used to monitor cancer cells.

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...