Chaperone protein subverts removal of glaucoma-causing protein

October 9, 2012

The chaperone protein Grp94 can interfere with the clearance of another protein known to cause the glaucoma when mutated, a new study led by researchers at the University of South Florida has found. Using a cell model, the researchers also demonstrated that a new specific inhibitor of Grp94 facilitates clearance of the genetically-defective protein, called myocilin, from cells.

Reported online this month in JBC (The ), the discoveries could lead to a new treatment for some hereditary cases of glaucoma, an eye disease that is a leading cause of blindness, said principal investigator Chad Dickey, PhD, associate professor of at the USF Health Byrd Alzheimer's Institute.

"When mutated, the glaucoma-causing protein becomes toxic to a cell network known as the trabecular meshwork cells that regulate pressure within the eye," Dickey said. "Once these cells die, the increases, causing glaucoma."

Genetic defects of myocilin account for approximately 8 to 36 percent of hereditary juvenile-onset glaucoma and 5 to 10 percent of adult-onset hereditary glaucoma.

The researchers suggest that mutant myocilin, triggered by an interaction with the chaperone Grp94, is highly resistant to degradation, thus clogging the protein quality control pathway and subverting efficient removal of the glaucoma-causing protein. So, the development of targeted therapies to inhibit Grp94 may be beneficial for patients suffering from myocilin glaucoma.

Explore further: Blinded by sFRP-1: A WNT signaling protein plays a key role in glaucoma

More information: "Grp94 triage of mutant myocilin through ERAD subverts a more efficient autophagic clearance mechanism;" Amirthaa Suntharalingam, Jose F. Abisambra, John C. O'Leary III, John Koren III, Bo Zhang, Myung Kuk Joe, Laura J. Blair, Shannon E. Hill, Umesh K. Jinwal, Matthew Cockman, Adam S. Duerfeldt, Stanislav Tomarev, Brian S.J. Blagg, Raquel L. Lieberman, and Chad A. Dickey; JBC: The Journal of Biological Chemistry; published Oct. 3, 2012 as manuscript M112.384800

Related Stories

Recommended for you

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.