Slow avalanches oscillate in new experiment

October 25, 2012 by Anne Ju
A microcrystal array for which extremely small forces and motions are tracked with atomic-scale precision to probe and model the avalanche response at slow driving rates. Within the image, a view of the San Andreas fault, where such effects can be seen in the world. Credit: Stefanos Papanikolaou

"Avalanches"—the crackling behavior of materials under slowly increasing stress, like crumpling paper or earthquakes—may have a novel facet previously unknown, say Cornell researchers.

A study led by former postdoctoral associate Stefanos Papanikolaou employs both theory and experiment to describe never-before-seen oscillatory behavior of microcrystal plastic bursts at very small scales, under highly controlled conditions.

The study, co-authored by James Sethna, professor of physics, is featured on the cover of the journal Nature, Oct. 25.

The experiments were done by co-author Dennis M. Dimiduk of the Air Force Research Laboratory, using microfabricated nickel microcrystals. They recorded individual microcrystals' behavior as they were slowly crushed, causing microscale avalanches. What emerged was a new power law that determined the probability of crackles of different sizes.

Analyzing the data, Papanikolaou and found that slowing the crushing of microcrystals led to an of avalanches themselves—large then small, in a repeating pattern, and with time periods between the large events roughly periodic. This was different from previous experiments and theories of crackling noise and avalanches.

Avalanches have previously been known to happen at random times following a power law behavior, in that the number of avalanches is given by a power of the avalanches' size. The new experiments not only display oscillations, but also give a markedly different power law—a "new route to criticality, with a perpetual cycle leading to the emergence of self-similarity," Sethna said.

They explain and model the oscillations and this new law by including other smooth "oozing" processes that compete with the avalanches; oozing becomes important when the are crushed nearly as slowly as they ooze.

It's a theory the scientists think could apply to many intermittent that become oscillatory as "relaxation" increases—earthquakes deep in the earth crust, for one, but even less conventional ones—like the low-frequency oscillations of brain waves during sleep.

"We could maybe open a window to actually starting to model accurately the emergence of such phenomena in large collections of neurons," Papanikolaou said.

Explore further: Physicists study mechanics of 'crackling'

Related Stories

Physicists study mechanics of 'crackling'

January 27, 2011

(PhysOrg.com) -- Everywhere around us, things "crackle" -- from Rice Krispies in a puddle of milk, to crumpled pieces of paper, to the Earth's crust from earthquakes. Physics is helping us understand what this familiar noise ...

Engineers model the threat of avalanches

July 25, 2012

(Phys.org) -- Snow avalanches, a real threat in countries from Switzerland to Afghanistan, are fundamentally a physics problem: What are the physical laws that govern how they start, grow and move, and can theoretical modeling ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.