3D structure of an unmodified G protein-coupled receptor in its natural habitat

October 22, 2012
CXCR1 structure

Scientists have determined the three-dimensional structure of a complete, unmodified G-protein-coupled receptor in its native environment: embedded in a membrane in physiological conditions.

Using , the team mapped the arrangement of atoms in a protein called CXCR1, which detects the inflammatory signal interleukin 8 and, through a G protein located inside the cell, triggers a cascade of events that can mobilize , for example.

Because G protein-coupled receptors are critical for many to external signals, they have been a major target for drugs. More precise knowledge of the shapes of these receptors will allow drugmakers to tailor small molecules to better fit specific targets, avoiding collateral hits that can cause detrimental side effects.

"This finding will have a major impact on structure-based drug development since for the first time the principal class of drug receptors can be studied in their biologically active forms where they interact with other proteins and potential drugs," said Stanley Opella, professor of chemistry and biochemistry at the University of California, San Diego who led the work, which Nature published online October 21st in advance of the print edition.

Protein structures are most often determined by reading the diffraction patterns of X-rays beamed at their crystalline form, but crystallizing such large, unwieldy molecules is a challenge often met with strategies such as snipping off floppy ends.

Those changes can alter the shape of critical regions of the protein. "Our approach was to not touch the protein," Opella said. "We are working with molecules in their active form."

Their strategy has revealed a new view of these receptors. Previous reports have all noted seven helices weaving through the membrane. Opella's group sees an eighth lying on the , a trait that at least some other G protein-coupled must share.

And the loops inside and outside of the cell are structured. "For years people thought the loops were mobile. They're not," Opella said. "The signals we get from the loops aren't any weaker than the other parts of the protein as they would be if they were waving about."

CXCR1 has been implicated in the progression of several types of cancer. In one example, preclinical studies have shown that blocking this receptor inhibits the undifferentiated stem cells within breast cancer tumors, leading to the death of all tumor cell types and stopping them from seeding new tumors.

Opella and colleagues hope this finding along with continuing studies of changes in this receptor's configuration as it binds to and drug candidate will lead to more effective and less harmful cancer treatments.

Explore further: Discovery of 'overdrive' protein could broaden drug design options

Related Stories

Beginning to see the light

September 29, 2008

(PhysOrg.com) -- Scientists have detailed the active form of a protein which they hope will enhance our understanding of the molecular mechanisms of vision, and advance drug design.

Recommended for you

Electric-car battery materials could harm key soil bacteria

February 10, 2016

The growing popularity of battery-powered cars could help reduce greenhouse gas emissions, but they are not entirely Earth friendly. Problems can creep in when these batteries are disposed of. Scientists, in a new study in ...

Hydrogels can put stem cells to sleep

February 10, 2016

Unlike normal cells, stem cells are pluripotent—they can become any cell type, which makes them powerful potential treatments for diseases such as diabetes, leukemia and age-related blindness. However, maintaining this ...

Room-temperature lithium metal battery closer to reality

February 4, 2016

Rechargeable lithium metal batteries have been known for four decades to offer energy storage capabilities far superior to today's workhorse lithium-ion technology that powers our smartphones and laptops. But these batteries ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.