Revelation of protein complex function that controls cell proliferation in fruit fly wings provides insights into tumor

September 12, 2012
The interaction between VgII1 and TEAD (top) is mediated by two interfaces that are similar to those found in the YAP–TEAD complex (bottom). Credit: 2012 Elsevier

A team of researchers in Singapore has determined the structure of a pair of proteins that may play an important role in tumor growth and the progression of cancer. The proteins, Vestigial (Vg) and Scalloped (Sd), normally control wing development in fruit flies, but the team found they show a remarkable structural and functional similarity to the cancer-promoting proteins called YAP and TAZ.

Led by Ajaybabu Pobbati and Wanjin Hong of the A*STAR Institute of , Singapore, the research team focused on these proteins because, after binding to each other, the Vg–Sd complex binds to DNA to regulate the expression of genes that control cell proliferation. The region of Vg that binds to Sd is also present in four mammalian proteins, called Vestigial-like proteins (VGII1-4). These proteins use this region to interact with the TEAD/ TEF , the mammalian equivalents of Sd. The TEAD transcription factors also bind to YAP and TAZ. Together, they increase the expression of cell-proliferation genes that promote .

Since little is known about the VGII proteins, the researchers used X-ray crystallography to determine the of VGII1 bound to TEAD. Their analysis revealed that VGII1 and TEAD interact with each other in two places. The first involves structures called β-pleated sheets on VGII1 and TEAD, which bind in an antiparallel fashion, or face in opposite directions. The second consists of another structure in the VGII1 protein, called an α-helix, which sits in a groove formed by two α-helices in TEAD. The α-helices in both proteins bond to each other because of a mutual repulsion by water.

Surprisingly, Pobbati, Hong and co-workers found that both interfaces are very similar to the interfaces that mediate interactions between the TEAD and YAP proteins, despite the fact that the of VGII1 and YAP bear very little resemblance to one another.

Finally, the researchers investigated the function of the VGII1–TEAD4 complex, and found that it increases expression of the IGFBP5 gene, which promotes cell proliferation. The complex also promotes anchorage-independent cell proliferation, which is one of the hallmarks of cancer. Together, these findings suggest that VGII1 may play an important role in the progression of cancer, in the same way as YAP and TAZ.

"In the future, we will be using various molecular, cellular and systems biology approaches to investigate if Vgll proteins have a definitive role in cancers," says Pobbati.

Explore further: Controlling for size may also prevent cancer

More information: Pobbati, A. V., Chan, S. W., Lee, I., Song, H. & Hong, W. Structural and functional similarity
 between the Vgll1-TEAD and the YAP-TEAD complexes. Structure 20, 1135–1140 (2012).

Related Stories

Controlling for size may also prevent cancer

September 20, 2007

Scientists at Johns Hopkins recently discovered that a chemical chain reaction that controls organ size in animals ranging from insects to humans could mean the difference between normal growth and cancer. The study, published ...

How one virus uses mimicry to replicate successfully

October 31, 2007

Both viruses and cancers subvert the growth-control machinery in a cell to serve their own needs. According to a new study, at least one virus uses mimicry to gain access to that machinery.

New molecular insight into vertebrate brain development

November 17, 2008

In the December 1st issue of G&D, Dr. Fred H. Gage (The Salk Institute for Biological Studies) and colleagues reveal a role for the Hippo signaling pathway in the regulation of vertebrate neural development, identifying new ...

Recommended for you

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.